Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 103(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399124

RESUMO

Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.


Assuntos
Flexiviridae , Vírus , Flexiviridae/genética , Genoma Viral , Vírus/genética , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala
2.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31704683

RESUMO

Pathogen introductions have led to numerous disease outbreaks in naive regions of the globe. The plant pathogen Xylella fastidiosa has been associated with various recent epidemics in Europe affecting agricultural crops, such as almond, grapevine, and olive, but also endemic species occurring in natural forest landscapes and ornamental plants. We compared whole-genome sequences of X. fastidiosa subspecies multiplex from America and strains associated with recent outbreaks in southern Europe to infer their likely origins and paths of introduction within and between the two continents. Phylogenetic analyses indicated multiple introductions of X. fastidiosa subspecies multiplex into Italy, Spain, and France, most of which emerged from a clade with limited genetic diversity with a likely origin in California, USA. The limited genetic diversity observed in X. fastidiosa subspecies multiplex strains originating from California is likely due to the clade itself being an introduction from X. fastidiosa subspecies multiplex populations in the southeastern United States, where this subspecies is most likely endemic. Despite the genetic diversity found in some areas in Europe, there was no clear evidence of recombination occurring among introduced X. fastidiosa strains in Europe. Sequence type taxonomy, based on multilocus sequence typing (MLST), was shown, at least in one case, to not lead to monophyletic clades of this pathogen; whole-genome sequence data were more informative in resolving the history of introductions than MLST data. Although additional data are necessary to carefully tease out the paths of these recent dispersal events, our results indicate that whole-genome sequence data should be considered when developing management strategies for X. fastidiosa outbreaks.IMPORTANCEXylella fastidiosa is an economically important plant-pathogenic bacterium that has emerged as a pathogen of global importance associated with a devastating epidemic in olive trees in Italy associated with X. fastidiosa subspecies pauca and other outbreaks in Europe, such as X. fastidiosa subspecies fastidiosa and X. fastidiosa subspecies multiplex in Spain and X. fastidiosa subspecies multiplex in France. We present evidence of multiple introductions of X. fastidiosa subspecies multiplex, likely from the United States, into Spain, Italy, and France. These introductions illustrate the risks associated with the commercial trade of plant material at global scales and the need to develop effective policy to limit the likelihood of pathogen pollution into naive regions. Our study demonstrates the need to utilize whole-genome sequence data to study X. fastidiosa introductions at outbreak stages, since a limited number of genetic markers does not provide sufficient phylogenetic resolution to determine dispersal paths or relationships among strains that are of biological and quarantine relevance.


Assuntos
Genoma Bacteriano , Doenças das Plantas/microbiologia , Xylella/genética , Brasil , Europa (Continente) , Espécies Introduzidas , Sequenciamento Completo do Genoma
3.
Phytopathology ; 109(9): 1516-1518, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31329051

RESUMO

An outbreak of Xylella fastidiosa was discovered in late 2018 in northern Italy affecting several plant species. Multilocus sequence typing analyses detected the presence of strains clustering in X. fastidiosa subsp. multiplex and harboring a hitherto uncharacterized sequence type, ST87. Three cultured strains (TOS4, TOS5, and TOS14) were subjected to high-throughput sequencing and the draft genomes assembled. Phylogenetic analysis conclusively indicated that they belong to the subspecies multiplex. The genetic information generated for these newly discovered strains further supports the evidence that sequence types are associated with the emergence of X. fastidiosa in Europe, posing major challenges for predicting the main threatened European and Mediterranean crops and plant species.


Assuntos
Xylella , Surtos de Doenças , Europa (Continente) , Itália , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
4.
Phytopathology ; 109(2): 219-221, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30592693

RESUMO

An outbreak of Xylella fastidiosa subsp. multiplex sequence type ST6 was discovered in 2017 in mainland Spain affecting almond trees. Two cultured almond strains, "ESVL" and "IVIA5901," were subjected to high throughput sequencing and the draft genomes assembled. Phylogenetic analysis conclusively indicated they belong to the subspecies multiplex, and pairwise comparisons of the chromosomal genomes showed an average nucleotide identity higher than 99%. Interestingly, the two strains differ for the presence of the plasmids pXF64-Hb_ESVL and pUCLA-ESVL detected only in the ESVL strain. The availability of these draft genomes contribute to extend the European genomic sequence dataset, a first step toward setting new research to elucidate the pathway of introduction and spread of the numerous strains of this subspecies so far detected in Europe.


Assuntos
Doenças das Plantas/microbiologia , Prunus dulcis , Xylella , Europa (Continente) , Filogenia , Análise de Sequência de DNA , Espanha
5.
Arch Virol ; 162(1): 299-306, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27709400

RESUMO

A quince tree showing severe symptoms of a previously undescribed viral disease occurring in northern Apulia (Italy) was analysed using high-throughput sequencing of small RNA libraries, leading to the identification of a new strain of apple green crinkle associated virus (isolate AGCaV-CYD) showing peculiar traits. RT-PCR with specific primers detected AGCaV-CYD in consistent association with symptoms in the surveyed orchards. Molecular characterization of the reconstructed genome, together with phylogenetic analysis, showed it to be closely related to an AGCaV strain causing green crinkle disease in apple (AGCaV-AUR) and divergent from the type strain of apple stem pitting virus (ASPV-PA66).


Assuntos
Flexiviridae/genética , Flexiviridae/isolamento & purificação , Genoma Viral , Doenças das Plantas/virologia , Rosaceae/virologia , Análise por Conglomerados , Flexiviridae/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência
6.
Phytopathology ; 107(7): 816-827, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28414633

RESUMO

Xylella fastidiosa is a plant-pathogenic bacterium recently introduced in Europe that is causing decline in olive trees in the South of Italy. Genetic studies have consistently shown that the bacterial genotype recovered from infected olive trees belongs to the sequence type ST53 within subspecies pauca. This genotype, ST53, has also been reported to occur in Costa Rica. The ancestry of ST53 was recently clarified, showing it contains alleles that are monophyletic with those of subsp. pauca in South America. To more robustly determine the phylogenetic placement of ST53 within X. fastidiosa, we performed a comparative analysis based on single nucleotide polymorphisms (SNPs) and the study of the pan-genome of the 27 currently public available whole genome sequences of X. fastidiosa. The resulting maximum-parsimony and maximum likelihood trees constructed using the SNPs and the pan-genome analysis are consistent with previously described X. fastidiosa taxonomy, distinguishing the subsp. fastidiosa, multiplex, pauca, sandyi, and morus. Within the subsp. pauca, the Italian and three Costa Rican isolates, all belonging to ST53, formed a compact phylotype in a clade divergent from the South American pauca isolates, also distinct from the recently described coffee isolate CFBP8072 imported into Europe from Ecuador. These findings were also supported by the gene characterization of a conjugative plasmid shared by all the four ST53 isolates. Furthermore, isolates of the ST53 clade possess an exclusive locus encoding a putative ATP-binding protein belonging to the family of histidine kinase-like ATPase gene, which is not present in isolates from the subspecies multiplex, sandyi, and pauca, but was detected in ST21 isolates of the subspecies fastidiosa from Costa Rica. The clustering and distinctiveness of the ST53 isolates supports the hypothesis of their common origin, and the limited genetic diversity among these isolates suggests this is an emerging clade within subsp. pauca.


Assuntos
Genoma Bacteriano , Estudo de Associação Genômica Ampla , Genótipo , Xylella/genética , Costa Rica , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Itália , Filogenia , Polimorfismo de Nucleotídeo Único
7.
BMC Genomics ; 17: 475, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27350531

RESUMO

BACKGROUND: The recent Xylella fastidiosa subsp. pauca (Xfp) outbreak in olive (Olea europaea) groves in southern Italy is causing a destructive disease denoted Olive Quick Decline Syndrome (OQDS). Field observations disclosed that Xfp-infected plants of cv. Leccino show much milder symptoms, than the more widely grown and highly susceptible cv. Ogliarola salentina. To determine whether these field observations underlie a tolerant condition of cv. Leccino, which could be exploited for lessening the economic impact of the disease on the local olive industry, transcriptional changes occurring in plants of the two cultivars affected by Xfp were investigated. RESULTS: A global quantitative transcriptome profiling comparing susceptible (Ogliarola salentina) and tolerant (Leccino) olive cultivars, infected or not by Xfp, was done on messenger RNA (mRNAs) extracted from xylem tissues. The study revealed that 659 and 447 genes were differentially regulated in cvs Leccino and Ogliarola upon Xfp infection, respectively, whereas 512 genes were altered when the transcriptome of both infected cultivars was compared. Analysis of these differentially expressed genes (DEGs) shows that the presence of Xfp is perceived by the plants of both cultivars, in which it triggers a differential response strongly involving the cell wall. Up-regulation of genes encoding receptor-like kinases (RLK) and receptor-like proteins (RLP) is the predominant response of cv. Leccino, which is missing in cv. Ogliarola salentina. Moreover, both cultivars react with a strong re-modelling of cell wall proteins. These data suggest that Xfp elicits a different transcriptome response in the two cultivars, which determines a lower pathogen concentration in cv. Leccino and indicates that this cultivar may harbor genetic constituents and/or regulatory elements which counteract Xfp infection. CONCLUSIONS: Collectively these findings suggest that cv. Leccino is endowed with an intrinsic tolerance to Xfp, which makes it eligible for further studies aiming at investigating molecular basis and pathways modulating its different defense response.


Assuntos
Perfilação da Expressão Gênica , Olea/genética , Olea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma , Xylella , Análise por Conglomerados , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes
8.
Arch Virol ; 161(5): 1401-3, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873812

RESUMO

A new satellite RNA (satRNA) of grapevine fanleaf virus (GFLV) was identified by high-throughput sequencing of high-definition (HD) adapter libraries from grapevine plants of the cultivar Panse precoce (PPE) affected by enation disease. The complete nucleotide sequence was obtained by automatic sequencing using primers designed based on next-generation sequencing (NGS) data. The full-length sequence, named satGFLV-PPE, consisted of 1119 nucleotides with a single open reading frame from position 15 to 1034. This satRNA showed maximum nucleotide sequence identity of 87 % to satArMV-86 and satGFLV-R6. Symptomatic grapevines were surveyed for the presence of the satRNA, and no correlation was found between detection of the satRNA and enation symptom expression.


Assuntos
Nepovirus/genética , RNA Satélite/genética , Vitis/virologia , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia
9.
Arch Virol ; 161(9): 2595-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27344161

RESUMO

Grapevine Pinot gris virus (GPGV) is a new virus reported in Europe and several other grape-growing countries. In an attempt to identify a vector for GPGV, samples of the eriophyid mite Colomerus vitis collected from buds and erinea in GPGV-infected vines were analysed by RT-PCR, using specific primers. Molecular analysis revealed the presence of GPGV in C. vitis. Transmission trials were conducted using C. vitis collected from GPGV-infected vines. Mites were able to transmit GPGV to healthy grapevines, suggesting that C. vitis is a potential vector of this virus.


Assuntos
Ácaros e Carrapatos/virologia , Vírus de Plantas/fisiologia , Vitis/virologia , Animais , Doenças das Plantas/virologia , Folhas de Planta/virologia , RNA Viral/genética
10.
Virus Genes ; 52(3): 428-31, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26924587

RESUMO

The complete nucleotide sequence and genome organization of a new Badnavirus isolated from the autochthonous grapevine variety "Bombino nero" from Apulia (Italy) was determined. The genome of this virus consists of 7097 nt and has four open reading frames (ORFs). Analysis of putative proteins encoded by each ORF revealed greatest sequence similarity to Grapevine Roditis leaf discoloration-associated virus w4 (GRLDaV; NC_027131). In a pairwise alignment with GLRDaV w4 genome sequence, the "Bombino Nero" sequence was 109 nt longer with a major 57 nt insertion between positions 2405 and 2413. Furthermore, its putative ORF4 is located after the ORF3, while in the GLRDaV w4 sequence, the putative ORF4 completely overlapped ORF3. Nucleotide analysis classifies this new Badnavirus as a GLRDaV strain, which was named GRLDaV-BN. Multi-year field observations showed that the GLRDaV-BN-infected vine was symptomless.


Assuntos
Badnavirus/genética , Vitis/virologia , Sequência de Aminoácidos , Badnavirus/química , Badnavirus/isolamento & purificação , Sequência de Bases , DNA Viral/genética , Genoma Viral , Itália , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Análise de Sequência de DNA
11.
Front Plant Sci ; 15: 1457831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39403622

RESUMO

Introduction: The epidemic spread of the harmful bacterium Xylella fastidiosa causing the "olive quick decline syndrome", decimating olive trees in southern Italy, in the region of Apulia, prompted investigations to search for olive genotypes harbouring traits of resistance. Methods: A prospecting survey was carried out to identify, in the heavily infected area of Apulia, olive genotypes bearing resistance. Given the limited genetic diversity in the commercial olive groves with few cultivars widely cultivated, surveys targeted predominantly spontaneous olive genotypes in natural and uncultivated areas. Trees, selected for the absence of symptoms, were subjected to diagnostic tests and parentage analysis to disclose their genetic background. Transcriptomic analyses were also employed to decipher the molecular pathways in resistant genotypes. Artificial inoculations were carried out to confirm the resistant phenotypes of four open-pollinated seedlings of the cultivar Leccino. Results: Among the 171 olive collected genotypes, 139 had unique simple sequence repeat (SSR) profiles, with the cultivars Leccino, Cellina di Nardò, and Ogliarola salentina being the most frequent candidate parents. Among the Leccino progeny (n. 61), 67% showed a highly resistant (HR), resistant (R), or tolerant (T) phenotype to infection by X. fastidiosa. The occurrence of such phenotypes among those deriving from Cellina di Nardò and Ogliarola salentina was 32% and 49%, respectively. Analyses of the transcriptomic profiles of three Leccino-bearing genotypes, naturally infected and not showing symptoms, unravelled that a total of 17,227, 13,031, and 4,513 genes were found altered in the expression, including genes involved in photosynthesis, cell wall, or primary and secondary metabolism. Discussion: Indeed, transcriptomic analyses showed that one of these genotypes (S105) was more resilient to changes induced by the natural bacterial infection than the remaining two (S215 and S234). This study consolidates the evidence on the presence and heritage of resistance traits associated with the cv. Leccino. Moreover, valuable insights were gathered when analysing their transcriptomic profiles, i.e., genes involved in mechanisms of response to the bacterium, which can be used in functional genetic approaches to introduce resistance in susceptible cultivars and initiate strategies in olive-breeding programs through marker-assisted selection.

12.
Front Plant Sci ; 14: 1343876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312355

RESUMO

Xylella fastidiosa subsp. pauca ST53 (Xfp) is a pathogenic bacterium causing one of the most severe plant diseases currently threatening the olive-growing areas of the Mediterranean, the Olive Quick Decline Syndrome (OQDS). The majority of the olive cultivars upon infections more or less rapidly develop severe desiccation phenomena, while few are resistant (e.g. Leccino and FS17), being less impacted by the infections. The present study contributes to elucidating the basis of the resistance phenomenon by investigating the influence of the composition of the xylem sap of plant species on the rate of bacterial multiplication. Xylem saps from Xfp host and non-host species were used for growing the bacterium in vitro, monitoring bacterial growth, biofilm formation, and the expression of specific genes. Moreover, species-specific metabolites, such as mannitol, quinic acid, tartaric acid, and choline were identified by non-targeted NMR-based metabolomic analysis in olive, grapevine, and citrus. In general, the xylem saps of immune species, including grapevine and citrus, were richer in amino acids, organic acids, and glucose. The results showed greater bacterial growth in the olive cultivar notoriously susceptible to Xfp (Cellina di Nardò), compared to that recorded in the resistant cultivar Leccino. Conversely, higher biofilm formation occurred in Leccino compared to Cellina di Nardò. Using the xylem saps of two Xfp-immune species (citrus and grapevine), a divergent bacterial behavior was recorded: low planktonic growth and biofilm production were detected in citrus compared to the grapevine. A parallel evaluation of the expression of 15 genes showed that Xfp directs its molecular functions mainly to virulence. Overall, the results gained through this multidisciplinary study contribute to extending the knowledge on the host-pathogen interaction, while confirming that the host response and resistance mechanism have a multifactorial basis, most likely with a cumulative effect on the phenotype.

13.
Arch Virol ; 157(2): 359-62, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22109709

RESUMO

The complete nucleotide sequence of an Albanian isolate of grapevine leafroll-associated virus 7 (GLRaV-7-Alb) was determined. The viral genome consists of 16,404 nucleotides and has nine open reading frames (ORFs) that potentially encode proteins, most of which are typical for members of the family Closteroviridae. Only the 25-kDa (ORF8) and 27-kDa (ORF9) proteins had no apparent similarity to other viral proteins in the sequence databases. The genome structure of GLRaV-7-Alb closely resembles that of little cherry virus 1 and cordyline virus 1. In phylogenetic trees constructed with HSP70h sequences, these three viruses cluster together in a clade next to that comprising members of the genus Crinivirus, to which they are more closely related than to the clostero- and ampeloviruses. The molecular properties of these three viruses differ sufficiently from those of members of the three extant genera of the family Closteroviridae to warrant their classification in a novel genus.


Assuntos
Closteroviridae/classificação , Closteroviridae/isolamento & purificação , Genoma Viral , Doenças das Plantas/virologia , Vitis/virologia , Albânia , Closteroviridae/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia
14.
Front Plant Sci ; 13: 1061463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531347

RESUMO

Transient expression of genes encoding peptides BP134 and BP178 by means of a Potato virus X (PVX) based-vector system, and treatment with synthetic peptides by endotherapy, were evaluated in the control of Xylella fastidiosa infections, in the model plant Nicotiana benthamiana. Transient production of BP178 significantly decreased disease severity compared to PVX and non-treated control (NTC) plants, without adverse effects. Plants treated with synthetic BP134 and BP178 showed consistently lower levels of disease than NTC plants. However, the coinfection with PVX-BP134 and X. fastidiosa caused detrimental effects resulting in plant death. The levels of X. fastidiosa in three zones sampled, upwards and downwards of the inoculation/treatment point, significantly decreased compared to the NTC plants, after the treatment with BP178, but not when BP178 was produced transiently. The effect of treatment and transient production of BP178 in the induction of defense-related genes was also studied. Synthetic BP178 applied by endotherapy induced the expression of ERF1, PR1a, PAL, PALII and WRKY25, while the transient expression of BP178 overexpressed the Cath, Cyc, PR4a, 9-LOX and Endochitinase B genes. Both treatments upregulated the expression of PR1, PR3, PR4 and CycT9299 genes compared to the NTC or PVX plants. It was concluded that the effect of BP178, either by endotherapy or by transient expression, on the control of the X. fastidiosa infections in N. benthamiana, was due in part to the induction of the plant defense system in addition to its bactericidal activity reported in previous studies. However, the protection observed when BP178 was transiently produced seems mainly mediated by the induction of plant defense, because the levels of X. fastidiosa were not significantly affected.

15.
Front Plant Sci ; 13: 968934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204082

RESUMO

Olive quick decline syndrome (OQDS) is a severe disease, first described in Italy in late 2013, caused by strains of Xylella fastidiosa subsp. pauca (Xfp) in susceptible olive cultivars. Conversely, resistant olive cultivars do not develop OQDS but present scattered branch dieback, which generally does not evolve to severe canopy decline. In the present study, we assessed the physiological responses of Xfp-infected olive trees of susceptible and resistant cultivars. Periodic measurements of stomatal conductance (gs) and stem water potential (Ψstem) were performed using a set of healthy and Xfp-infected plants of the susceptible "Cellina di Nardò" and resistant "Leccino" and "FS17" cultivars. Strong differences in Δgs and ΔΨstem among Xfp-infected trees of these cultivars were found, with higher values in Cellina di Nardò than in Leccino and FS17, while no differences were found among healthy plants of the different cultivars. Both resistant olive cultivars showed lower water stress upon Xfp infections, compared to the susceptible one, suggesting that measurements of gs and Ψstem may represent discriminating parameters to be exploited in screening programs of olive genotypes for resistance to X. fastidiosa.

16.
Adv Sci (Weinh) ; 9(30): e2203900, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031404

RESUMO

Pathogens ultra-sensitive detection is vital for early diagnosis and provision of restraining actions and/or treatments. Among plant pathogens, Xylella fastidiosa is among the most threatening as it can infect hundreds of plant species worldwide with consequences on agriculture and the environment. An electrolyte-gated transistor is here demonstrated to detect X. fastidiosa at a limit-of-quantification (LOQ) of 2 ± 1 bacteria in 0.1 mL (20 colony-forming-unit per mL). The assay is carried out with a millimeter-wide gate functionalized with Xylella-capturing antibodies directly in saps recovered from naturally infected plants. The proposed platform is benchmarked against the quantitave polymerase chain reaction (qPCR) gold standard, whose LOQ turns out to be at least one order of magnitude higher. Furthermore, the assay selectivity is proven against the Paraburkholderia phytofirmans bacterium (negative-control experiment). The proposed label-free, fast (30 min), and precise (false-negatives, false-positives below 1%) electronic assay, lays the ground for an ultra-high performing immunometric point-of-care platform potentially enabling large-scale screening of asymptomatic plants.


Assuntos
Xylella , Doenças das Plantas , Plantas/microbiologia , Eletrônica
17.
Viruses ; 13(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804134

RESUMO

In 2014, high-throughput sequencing of libraries of total DNA from olive trees allowed the identification of two geminivirus-like contigs. After conventional resequencing of the two genomic DNAs, their analysis revealed they belonged to the same viral entity, for which the provisional name of Olea europaea geminivirus (OEGV) was proposed. Although DNA-A showed a genome organization similar to that of New World begomoviruses, DNA-B had a peculiar ORF arrangement, consisting of a movement protein (MP) in the virion sense and a protein with unknown function on the complementary sense. Phylogenetic analysis performed either on full-length genome or on coat protein, replication associated protein (Rep), and MP sequences did not endorse the inclusion of this virus in any of the established genera in the family Geminiviridae. A survey of 55 plants revealed that the virus is widespread in Apulia (Italy) with 91% of the samples testing positive, although no correlation of OEGV with a disease or specific symptoms was encountered. Southern blot assay suggested that the virus is not integrated in the olive genome. The study of OEGV-derived siRNA obtained from small RNA libraries of leaves and fruits of three different cultivars, showed that the accumulation of the two genomic components is influenced by the plant genotype while virus-derived-siRNA profile is in line with other geminivirids reported in literature. Single-nucleotide polymorphism (SNP) analysis unveiled a low intra-specific variability.


Assuntos
Geminiviridae/classificação , Geminiviridae/patogenicidade , Genoma Viral , Olea/genética , Olea/virologia , Filogenia , Vírus de DNA/genética , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Plantas/virologia , Vírion/genética , Vírion/isolamento & purificação
18.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34904938

RESUMO

The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930-2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.


Assuntos
Olea/microbiologia , Sequenciamento Completo do Genoma/métodos , Xylella/classificação , Adaptação Fisiológica , América Central , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Filogenia , Filogeografia , Doenças das Plantas/microbiologia , Xylella/genética , Xylella/isolamento & purificação
19.
Microorganisms ; 9(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34442850

RESUMO

Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond.

20.
Plants (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374221

RESUMO

Sixteen grapevine cultivars from Mediterranean Croatia were surveyed for the presence of 10 of the most economically important grapevine viruses. The presence of Grapevine fanleaf virus (GFLV), Arabis mosaic virus (ArMV), Grapevine leafroll associated virus-1, -2, and -3 (GLRaV-1; GLRaV-2 and GLRaV-3), Grapevine virus A (GVA) and B (GVB), Grapevine fleck virus (GFkV), Grapevine rupestris stem pitting associated virus (GRSPaV), and Grapevine Pinot gris virus (GPGV) were tested by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). All 71 analyzed clones were positive for the presence of one or more viruses. The most abundant one, detected in almost 95% of samples was GLRaV-3. In most of cases it was reported in mixed infections with GVA, GRSPaV, and GPGV. Virus genomes of GLRaV-3 infected vines were further characterized molecularly in order to determine their genetic diversity. Different genomic variants of heat shock 70 protein homologue (HSP70h) were identified by single-strand conformation polymorphism (SSCP) and sequenced. Sequence analysis confirmed their clustering into phylogenetic group I and/or phylogenetic group II. This study emphasizes the wide virus heterogenicity in Mediterranean vines and the predominant presence of GLRaV-3 phylogenetic groups I and II, either individually or in combination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA