Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 30(1): 93-8, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053891

RESUMO

Death-associated protein kinase (DAPK) is a key player in multiple cell death signaling pathways. We report that DAPK is regulated by DANGER, a partial MAB-21 domain-containing protein. DANGER binds directly to DAPK and inhibits DAPK catalytic activity. DANGER-deficient mouse embryonic fibroblasts and neurons exhibit greater DAPK activity and increased sensitivity to cell death stimuli than do wild-type control cells. In addition, DANGER-deficient mice manifest more severe brain damage after acute excitotoxicity and transient cerebral ischemia than do control mice. Accordingly, DANGER may physiologically regulate the viability of neurons and represent a potential therapeutic target for stroke and neurodegenerative diseases.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteínas de Membrana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular , Humanos , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/fisiologia
2.
Brain Sci ; 11(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068448

RESUMO

The authors wish to make the following corrections to this paper: ref [...].

3.
Neuroscience ; 460: 120-129, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465414

RESUMO

Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Fibrinolíticos/uso terapêutico , Isquemia/tratamento farmacológico , Metaloproteinase 9 da Matriz , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual
4.
Front Cardiovasc Med ; 7: 608899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426005

RESUMO

Alpha2-antiplasmin (α2AP), the fast-reacting, serine protease inhibitor (serpin) of plasmin, was originally thought to play a key role in protection against uncontrolled, plasmin-mediated proteolysis of coagulation factors and other molecules. However, studies of humans and mice with genetic deficiency of α2AP have expanded our understanding of this serpin, particularly in disease states. Epidemiology studies have shown an association between high α2AP levels and increased risk or poor outcome in cardiovascular diseases. Mechanistic studies in disease models indicate that α2AP stops the body's own fibrinolytic system from dissolving pathologic thrombi that cause venous thrombosis, pulmonary embolism, arterial thrombosis, and ischemic stroke. In addition, α2AP fosters the development of microvascular thrombosis and enhances matrix metalloproteinase-9 expression. Through these mechanisms and others, α2AP contributes to brain injury, hemorrhage and swelling in experimental ischemic stroke. Recent studies also show that α2AP is required for the development of stasis thrombosis by inhibiting the early activation of effective fibrinolysis. In this review, we will discuss the key role played by α2AP in controlling thrombosis and fibrinolysis and, we will consider its potential value as a therapeutic target in cardiovascular diseases and ischemic stroke.

5.
Behav Pharmacol ; 20(7): 567-75, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19654508

RESUMO

Oxidative stress plays a crucial role in the progression of cognitive decline in Alzheimer's disease (AD). Considerable attention has been focused on increasing the internal antioxidant defenses in response to AD. This study was designed to examine and compare the pretreatment effects of Pycnogenol (PYC) and vitamin E (Vit E) on cognitive deficits and oxidative damage in the hippocampus and cerebral cortex of intracerebroventricular streptozotocin (ICV-STZ)-infused rats. Rats pretreated with PYC (10 mg/kg), Vit E (100 mg/kg), and vehicle (intraperitoneal; once daily for 3 weeks) were bilaterally injected with ICV-STZ (3 mg/kg), whereas sham rats received the same volume of vehicle. After 2 weeks of ICV-STZ infusion, rats were tested for cognitive performance using passive avoidance and water maze tasks, and then killed for biochemical assays. ICV-STZ induced significant declines in cognitive performance and choline acetyltransferase activity in the hippocampus, which were significantly attenuated with PYC and Vit E. Pretreatment with PYC and Vit E produced a significantly enhanced glutathione level and Na+/K+-ATPase activity and decreased thiobarbituric acid reactive substances and protein carbonyl. These findings suggest that PYC and Vit E may provide a promising approach for the treatment of oxidative stress-related neurodegeneration in conditions such as AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Antioxidantes/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Flavonoides/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Estreptozocina/administração & dosagem , Vitamina E/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Flavonoides/farmacologia , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Extratos Vegetais , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vitamina E/farmacologia
6.
Stroke ; 39(12): 3389-96, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18845796

RESUMO

BACKGROUND AND PURPOSE: Ginkgo biloba extracts are now prescribed in several countries for their reported health benefits, particularly for medicinal properties in the brain. The standardized Ginkgo extract, EGb761, has been reported to protect neurons against oxidative stress, but the underlying mechanisms are not fully understood. METHODS: To characterize the oral consumption of EGb761 in transient ischemia, we performed the middle cerebral artery occlusion (MCAO) filament model in wild-type and heme oxygenase 1 (HO-1) knockouts. Mice were pretreated for 7 days before the transient occlusion or posttreated acutely during reperfusion; then neurobehavioral scores and infarct volumes were assessed. Furthermore, primary cortical neuronal cultures were used to investigate the contribution of the antioxidant enzyme HO-1 in the EGb761-associated cytoprotection. RESULTS: Mice that were pretreated with EGb761 had 50.9+/-5.6% less neurological dysfunction and 48.2+/-5.3% smaller infarct volumes than vehicle-treated mice; this effect was abolished in HO-1 knockouts. In addition to the prophylactic properties of EGb761, acute posttreatment 5 minutes and 4.5 hours after reperfusion also led to significant reduction in infarct size (P<0.01). After our previous demonstration that EGb761 significantly induced HO-1 levels in a dose- and time-dependent manner in neuronal cultures, here we revealed that this de novo HO-1 induction was required for neuroprotection against free radical damage and excitotoxicity as it was significantly attenuated by the enzyme inhibitor. CONCLUSIONS: These results demonstrate that EGb761 could be used as a preventive or therapeutic agent in cerebral ischemia and suggest that HO-1 contributes, at least in part, to EGb761 neuroprotection.


Assuntos
Antioxidantes/uso terapêutico , Dano Encefálico Crônico/prevenção & controle , Isquemia Encefálica/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Ginkgo biloba , Heme Oxigenase-1/fisiologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Proteínas de Membrana/fisiologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Dano Encefálico Crônico/etiologia , Isquemia Encefálica/enzimologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/enzimologia , Circulação Cerebrovascular/efeitos dos fármacos , Ciclopentanos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Indução Enzimática/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Furanos/farmacologia , Ginkgolídeos/farmacologia , Ácido Glutâmico/farmacologia , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/enzimologia , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/fisiologia , Neurônios/enzimologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Elementos de Resposta/efeitos dos fármacos
7.
Basic Clin Pharmacol Toxicol ; 101(4): 246-53, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17845506

RESUMO

Majun Baladar (MB), a traditional herbal formulation of the Unani system of medicine, was studied for its efficacy against cerebral ischaemia-induced oxidative damage in hippocampus and associated neurobehavioural deficits. Adult male Wistar rats were divided into four groups. The first group was sham, the second group was ischaemic (MCAO: middle cerebral artery occluded) and the third group was a MB pre-treated ischaemic group (MCAO + MB). The fourth group was given MB (1.05 g/kg) orally for 15 days as a drug control. The middle cerebral artery was occluded for 2 hr and reperfused for 22 hr in the ischaemic as well as the drug pre-treated group. The activity of the various enzymatic antioxidants like glutathione peroxidase, glutathione reductase, glutathione S-transferase and non-enzymatic antioxidants, glutathione along with levels of lipid peroxidation were evaluated. Cerebral ischaemic rats showed elevated level of lipid peroxidation and decreased levels of various antioxidants significantly over sham values. As a result of MB pre-treatment, the level of lipid peroxidation was found to be significantly depleted as compared to the ischaemic group. Furthermore, depleted levels of glutathione and the activity of glutathione peroxidase, glutathione S-transferase and glutathione reductase were restored significantly in MB treated group. Majun Baladar exhibited a significant improvement in neurobehavioural activities in the drug pre-treated animals as compared to the ischaemic group as evidenced by the grip strength test, Rota-Rod and video path analysis. The results of the present study provide baseline information regarding the neuroprotective efficacy of MB and also open a window for a potent therapeutic use of this traditional herbal Unani medicine.


Assuntos
Antioxidantes/uso terapêutico , Ataque Isquêmico Transitório/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Glutationa/análise , Glutationa Peroxidase/análise , Glutationa Redutase/análise , Glutationa Transferase/análise , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ataque Isquêmico Transitório/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Medicina Tradicional , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Ratos
8.
Toxicol Sci ; 89(1): 265-70, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16237196

RESUMO

The clinical side effects associated with the inhibition of cyclooxygenase enzymes under pathologic conditions have recently raised concerns. A better understanding of neuroinflammatory mechanisms and neuronal survival requires knowledge of cyclooxygenase downstream pathways, especially PGE2 and its G-protein-coupled receptors. In this study, we postulate that EP1 receptor is one of the mechanisms that propagate neurotoxicity and could be a therapeutic target in brain injury. This hypothesis was tested by pretreating C57BL/6 wildtype mice with the EP1 receptor selective agonist ONO-DI-004 and the selective antagonist ONO-8713, followed by striatal unilateral NMDA injection. Results revealed that ONO-DI-004 increased NMDA-induced lesion volume up to 128.7 +/- 12.0%, while ONO-8713 significantly decreased lesion volume to 71.3 +/- 10.9%, as compared to the NMDA-control group. Neurotoxic EP1 receptor properties were also studied using C57BL/6 EP1 receptor knockout (EP1-/-) mice, which revealed a significant decrease to 74.5 +/- 8.2%, as compared to wildtype controls. The protective effect of the antagonist ONO-8713 was also tested in the EP1-/- mice, revealing no additional protection in these mice. Together, these results support the selectivity of ONO-8713 toward EP1 receptor and suggest the neurotoxic role of EP1 receptor. Furthermore, the EP1 receptor role in ischemic brain damage was investigated using a model of middle cerebral artery occlusion (MCAO) and reperfusion. The infarct volume was significantly reduced to 56.9 +/- 11.5% in EP1-/- mice, as compared to wildtype controls. This is the first study that demonstrates that EP1 receptor aggravates neurotoxicity and that modulation of this receptor can determine the outcomes in both excitotoxic and focal ischemic neuronal damage.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Neurotoxinas/toxicidade , Receptores de Prostaglandina E/metabolismo , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Cinamatos/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Cerebral Média , Neurônios/patologia , Compostos Nitrosos/toxicidade , Receptores de Prostaglandina E/antagonistas & inibidores , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
9.
J Med Food ; 9(4): 537-44, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17201642

RESUMO

The objective of the present study was to investigate the effects of aqueous garlic extract (AGE) on neurobehavioral activities, malondialdehyde (MDA) and reduced glutathione (GSH) levels, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and sodium-potassium ATPase (Na(+),K(+)-ATPase) activities, and glutamate and aspartate content in a middle cerebral artery (MCA) occlusion (MCAO) model of acute cerebral ischemia in rats. The right MCA of male Wistar rats was occluded for 2 hours using intraluminal 4-0 monofilament, and reperfusion was allowed for 22 hours. MCAO caused significant depletion in GSH and its dependent enzymes (GPx, GR, and GST) and significant elevation of MDA, glutamate, and aspartate. The activities of Na(+),K(+)- ATPase, SOD, and CAT were decreased significantly by MCAO. The neurobehavioral activities (grip strength, spontaneous motor activity, and motor coordination) were also decreased significantly in the MCAO group. All of the alterations induced by ischemia were significantly attenuated by pretreatment with AGE (500 mg/mL/kg of body weight, i.p.) 30 minutes before the induction of MCAO and correlated well with histopathology by decreasing the neuronal cell death following MCAO and reperfusion. These findings suggest that AGE effectively modulates neurobehavioral and neurochemical changes in focal ischemia, most probably by virtue of its antioxidant properties.


Assuntos
Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Alho/química , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Encéfalo/enzimologia , Química Encefálica , Isquemia Encefálica/enzimologia , Catalase/análise , Constrição , Glutationa/análise , Glutationa Peroxidase/análise , Glutationa Redutase/análise , Glutationa Transferase/análise , Força da Mão , Masculino , Malondialdeído/análise , Artéria Cerebral Média , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/análise , Superóxido Dismutase/análise
10.
J Med Food ; 9(2): 246-53, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16822211

RESUMO

The modifying effects of Crocus sativus (CS) stigma extract on neurobehavioral activities, malondialdehyde (MDA), reduced glutathione (GSH), glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase (SOD), catalase (CAT), and Na(+),K(+)-ATPase activities, and glutamate (Glu) and aspartate (Asp) content were examined in the middle cerebral artery (MCA) occlusion (MCAO) model of acute cerebral ischemia in rats. The right MCA of male Wistar rats was occluded for 2 hours using intraluminal 4-0 monofilament, and reperfusion was allowed for 22 hours. MCAO caused significant depletion in the contents of GSH and its dependent enzymes while significant elevation of MDA, Glu, and Asp. The activities of Na(+),K(+)-ATPase, SOD, and CAT were decreased significantly by MCAO. The neurobehavioral activities (grip strength, spontaneous motor activity, and motor coordination) were also decreased significantly in the MCAO group. All the alterations induced by ischemia were significantly attenuated by pretreatment of CS (100 mg/kg of body weight, p.o.) 7 days before the induction of MCAO and correlated well with histopathology by decreasing the neuronal cell death following MCAO and reperfusion. The present results may suggest the effectiveness of CS in focal ischemia most probably by virtue of its antioxidant property.


Assuntos
Comportamento/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Isquemia Encefálica/fisiopatologia , Encéfalo/efeitos dos fármacos , Crocus/química , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Ácido Aspártico/análise , Isquemia Encefálica/tratamento farmacológico , Catalase/metabolismo , Modelos Animais de Doenças , Flores/química , Ácido Glutâmico/análise , Glutationa/análise , Força da Mão , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/análise , Atividade Motora/efeitos dos fármacos , Fitoterapia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo
11.
Hum Exp Toxicol ; 25(7): 361-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16898164

RESUMO

Parkinson's disease (PD) is one of the major neurodegenerative disorders, and oxidative stress has been implicated in playing an important role in the pathogenesis of the disease. In the present study, we investigated if Delphinium denudatum extract can slow down the neuronal injury in 6-hydroxydopamine (6-OHDA) rat model of Parkinsonism. Rats were treated with 200, 400 and 600 mg/kg body weight (b.w.) of D. denudatum extract for 3 weeks. On day 22, 2 microL of 6-OHDA (10 microg in 0.1% ascorbic acid-saline) or vehicle was infused into the right striatum of the animals. Three weeks after the 6-OHDA injections, the rats were killed for estimation of lipid peroxidation (LPO), reduced glutathione (GSH) content, superoxide dismutase (SOD) and catalase (CAT) activities, catecholamines, dopaminergic D2 receptor binding and tyrosine hydroxylase (TH) expression. Increased LPO and significant depletion of reduced GSH content in the substantia nigra resulting from the lesion were appreciably prevented with Delphinium treatment. Delphinium extract also dose-dependently attenuated the activities of SOD and CAT in striatum, which had been reduced significantly by lesioning. A significant decrease in the level of dopamine (DA) and its metabolites and an increase in the number of dopaminergic D2 receptors in striatum were observed after 6-OHDA injection, both parameters were significantly recovered with treatment of the extract. Finally, all these results were confirmed by an increase in expression of TH in the ipsilateral striatum of the lesioned groups following treatment with Delphinium extract. Thus, the study indicates that D. denudatum extract may be helpful in checking neuronal injury in Parkinsonism.


Assuntos
Encéfalo/efeitos dos fármacos , Delphinium , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Doença de Parkinson Secundária/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Encéfalo/enzimologia , Catalase/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Peroxidação de Lipídeos , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/enzimologia , Ratos , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Superóxido Dismutase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Pharmacol Biochem Behav ; 81(4): 805-13, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16005057

RESUMO

Reactive oxygen species (ROS) are implicated as the leading biochemical cause of neuronal death in various neurologic disorders, including Parkinson's disease. In the present study, neuromodulatory effects of crocetin (active constituent of Crocus sativus) in a 6-hydroxydopamine (6-OHDA) model of rat Parkinsonism were investigated. Male Wistar rats were pre-treated with crocetin (25, 50 and 75 microg/kg body weight) for 7 days and subjected to unilateral intrastriatal injection of 10 microg 6-OHDA on day 8. Locomotion and rotation were observed on day 23 post-injection, and after 4 weeks, striatum and substantia nigra were dissected out by decapitation. Activity of antioxidant enzymes and content of dopamine (DA) and its metabolites were estimated in striatum, whereas glutathione (GSH) content and thiobarbituric acid reactive substance (TBARS) were evaluated in substantia nigra. Levels of GSH and dopamine were protected, while TBARS content was attenuated in crocetin-treated groups. The activity of antioxidant enzymes was decreased in the lesion group, but protected in the crocetin-treated groups. These findings were supported by the histopathologic findings in the substantia nigra that showed that crocetin protects neurons from deleterious effects of 6-OHDA. This study revealed that crocetin, which is an important ingredient of diet in India and also used in various systems of indigenous medicine, is helpful in preventing Parkinsonism and has therapeutic potential in combating this devastating neurologic disorder.


Assuntos
Carotenoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/prevenção & controle , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Catalase/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Ácido Homovanílico/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Ratos , Ratos Wistar , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vitamina A/análogos & derivados
13.
Hum Exp Toxicol ; 24(3): 137-47, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15901053

RESUMO

6-Hydroxydopamine (6-OHDA) is one of the most widely used rat models for Parkinson's disease. There is ample evidence in the literature that 6-OHDA elicits its toxic manifestations through oxidant stress. In the present study, we evaluated the anti-parkinsonian effects of Withania somnifera extract, which has been reported to have potent anti-oxidant, anti-peroxidative and free radical quenching properties in various diseased conditions. Rats were pretreated with 100, 200 and 300 mg/kg b.w. of the W. somnifera extract orally for 3 weeks. On day 21, 2 microL of 6-OHDA (10 microg in 0.1% in ascorbic acid-saline) was infused into the right striatum while sham operated group received 2 microL of the vehicle. Three weeks after 6-OHDA injections, rats were tested for neurobehavioral activity and were killed 5 weeks after lesioning for the estimation of lipidperoxidation, reduced glutathione content, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase, catecholamine content, dopaminergic D2 receptor binding and tyrosine hydroxylase expression. W. somnifera extract was found to reverse all the parameters significantly in a dose-dependent manner. Thus, the study demonstrates that the extract of W. somnifera may be helpful in protecting the neuronal injury in Parkinson's disease.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Withania/química , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Fármacos Neuroprotetores/isolamento & purificação , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar
14.
Sci Rep ; 5: 14781, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26477507

RESUMO

Stroke and vascular dementia are leading causes of morbidity and mortality. Neuroprotective therapies have been proposed but none have proven clinically tolerated and effective. While overstimulation of N-methyl-d-aspartate-type glutamate receptors (NMDARs) is thought to contribute to cerebrovascular insults, the importance of NMDARs in physiological function has made this target, at least in the view of many in 'Big Pharma,' 'undruggable' for this indication. Here, we describe novel NitroMemantine drugs, comprising an adamantane moiety that binds in the NMDAR-associated ion channel that is used to target a nitro group to redox-mediated regulatory sites on the receptor. The NitroMemantines are both well tolerated and effective against cerebral infarction in rodent models via a dual allosteric mechanism of open-channel block and NO/redox modulation of the receptor. Targeted S-nitrosylation of NMDARs by NitroMemantine is potentiated by hypoxia and thereby directed at ischemic neurons. Allosteric approaches to tune NMDAR activity may hold therapeutic potential for cerebrovascular disorders.


Assuntos
Transtornos Cerebrovasculares/metabolismo , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Anuros , Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memantina/análogos & derivados , Memantina/uso terapêutico , Potenciais da Membrana/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oxirredução/efeitos dos fármacos , Ratos , Transmissão Sináptica/efeitos dos fármacos
15.
J Chem Neuroanat ; 26(2): 143-51, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14599664

RESUMO

Normal cellular metabolism produces oxidants which are neutralized within the cell by antioxidant enzymes and other antioxidants. An imbalance between oxidant and antioxidant has been postulated to lead the degeneration of dopaminergic neurons in Parkinson's disease. In this study, we examined whether adenosine, an antioxidant, can prevent or slowdown neuronal injury in 6-hydroxydopamine (6-OHDA) model of Parkinsonism. Rats were treated with adenosine (500, 250, 125 mg/kg b.wt.) once before surgery and five times after surgery (1 h interval). 2 microl 6-OHDA (12.5 microg in 0.2% ascorbic acid in normal saline) was infused in the right striatum. Two weeks after 6-OHDA infused rats were tested for neurobehavioral activity and sacrificed after 3 weeks of 6-OHDA infusion, for the estimation of glutathione peroxidase, glutathione-S-transferase, glutathione reductase, glutathione content, lipid peroxidation and dopamine and its metabolites. Adenosine was found to be successful in up-regulating the antioxidant status, lowering the dopamine loss and functional recovery returned close to the baseline dose. This study revealed that adenosine, which is an essential part of our body, might be helpful in slowing down the progression of neurodegeneration in Parkinsonism.


Assuntos
Adenosina/farmacologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Doença de Parkinson Secundária/prevenção & controle , Animais , Catalase/metabolismo , Dopamina/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Oxirredução , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/psicologia , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Wistar , Simpatomiméticos
16.
Artigo em Inglês | MEDLINE | ID: mdl-25584359

RESUMO

Beraprost sodium is a new stable, orally active Prostaglandin I2 analogue. The aim of this study was to determine the effect of beraprost on cognitive dysfunction and locomotor impairment induced by bilateral common carotid artery occlusion in mice. We investigated the ameliorating effect of beraprost through PGI2 IP receptor by studying neurologic deficit assessment and T-maze testing in young and old male C57Bl/6 wild-type (WT) and IP receptor knockout (IP KO) mice following a 12 min bilateral common carotid artery occlusion (BCCAo) and 7 days of reperfusion. Beraprost reversed BCCAo induced cognitive impairment and neurological deficit in a dose dependent manner. Immunohistochemical studies showed attenuation of neuronal cell death, astrogliosis, microglial invasion, and myeloperoxidase (MPO) activity in both young and old WT mice after post treatment with beraprost. Moreover, after BCCAo, phosphorylated cAMP response element binding protein positive cell numbers were increased with beraprost treatment over vehicle treated controls. These results show that beraprost treatment attenuated cognitive dysfunction and neurological deficits induced by BCCAo, and suggest that this effect may be mediated by the neuroprotective effects of treatment.

17.
Cell Rep ; 8(1): 217-28, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25001280

RESUMO

Redox-mediated posttranslational modifications represent a molecular switch that controls major mechanisms of cell function. Nitric oxide (NO) can mediate redox reactions via S-nitrosylation, representing transfer of an NO group to a critical protein thiol. NO is known to modulate neurogenesis and neuronal survival in various brain regions in disparate neurodegenerative conditions. However, a unifying molecular mechanism linking these phenomena remains unknown. Here, we report that S-nitrosylation of myocyte enhancer factor 2 (MEF2) transcription factors acts as a redox switch to inhibit both neurogenesis and neuronal survival. Structure-based analysis reveals that MEF2 dimerization creates a pocket, facilitating S-nitrosylation at an evolutionally conserved cysteine residue in the DNA binding domain. S-Nitrosylation disrupts MEF2-DNA binding and transcriptional activity, leading to impaired neurogenesis and survival in vitro and in vivo. Our data define a molecular switch whereby redox-mediated posttranslational modification controls both neurogenesis and neurodegeneration via a single transcriptional signaling cascade.


Assuntos
Apoptose , Fatores de Transcrição MEF2/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Ativação Transcricional , Animais , Sítios de Ligação , Células Cultivadas , DNA/metabolismo , Células HEK293 , Humanos , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/genética , Camundongos , Células-Tronco Neurais/citologia , Oxirredução , Ligação Proteica
18.
Brain Sci ; 3(3): 1095-108, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24634780

RESUMO

Transient global cerebral ischemia causes delayed neuronal death in the hippocampal CA1 region. It also induces an up regulation of cyclooxygenase 2 (COX-2), which generates several metabolites of arachidonic acid, known as prostanoids, including Prostaglandin I2 (PGI2). The present study investigated whether the PGI2 IP receptor plays an important role in brain injury after global cerebral ischemia in aged mice. Adult young (2-3 months) and aged (12-15 months) male C57Bl/6 wild-type (WT) or IP receptor knockout (IP KO) mice underwent a 12 min bilateral common carotid artery occlusion (BCCAO) or a sham surgery. Behavior tests (neurologic deficit and T-maze) were performed 3 and 7 days after BCCAO. After seven days of reperfusion, the numbers of cells positive for markers of neurons, astrocytes, microglia, myeloperoxidase (MPO) and phosphorylated CREB (p-CREB) were evaluated immunohistochemically. Interestingly, in young and aged IP KO ischemic mice, there was a significant increase (p < 0.01) in cognitive deficit, hippocampal CA1 pyramidal neuron death, microglia and MPO activation, while p-CREB was reduced as compared to their corresponding WT controls. These data suggest that following ischemia, IP receptor deletion contributes to memory and cognitive deficits regulated by the CREB pathway and that treatment with IP receptor agonists could be a useful target to prevent harmful consequences.

19.
PLoS One ; 8(8): e71447, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940756

RESUMO

Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.


Assuntos
Catepsina G/fisiologia , Neutrófilos/fisiologia , Agregação Plaquetária/genética , Trombose/genética , Adulto , Animais , Plaquetas/patologia , Plaquetas/fisiologia , Feminino , Hemostasia/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/enzimologia , Trombose/metabolismo
20.
Free Radic Biol Med ; 52(5): 928-36, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22226832

RESUMO

Interest in histone deacetylase (HDAC)-based therapeutics as a potential treatment for stroke has grown dramatically. The neuroprotection of HDAC inhibition may involve multiple mechanisms, including modulation of transcription factor acetylation independent of histones. The transcription factor Nrf2 has been shown to be protective in stroke as a key regulator of antioxidant-responsive genes. Here, we hypothesized that HDAC inhibition might provide neuroprotection against mouse cerebral ischemia by activating the Nrf2 pathway. We determined that the classic HDAC inhibitor trichostatin A increased neuronal cell viability after oxygen-glucose deprivation (from an OD value of 0.10±0.01 to 0.25±0.08) and reduced infarct volume in wild-type mice with stroke (from 49.1±3.8 to 21.3±4.6%). In vitro studies showed that HDAC inhibition reduced Nrf2 suppressor Keap1 expression, induced Keap1/Nrf2 dissociation, Nrf2 nuclear translocation, and Nrf2 binding to antioxidant response elements in heme oxygenase 1 (HO1), and caused HO1 transcription. Furthermore, we demonstrated that HDAC inhibition upregulated proteins downstream of Nrf2, including HO1, NAD(P)H:quinone oxidoreductase 1, and glutamate-cysteine ligase catalytic subunit in neuron cultures and brain tissue. Finally, unlike wild-type mice, Nrf2-deficient mice were not protected by pharmacologic inhibition of HDAC after cerebral ischemia. Our studies suggest that activation of Nrf2 might be an important mechanism by which HDAC inhibition provides neuroprotection.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Isquemia Encefálica/patologia , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch , Luciferases/biossíntese , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Ligação Proteica , Elementos de Resposta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA