Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 67(2): 477-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475923

RESUMO

In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.


Assuntos
Glicoproteínas/química , Proteínas de Membrana/química , Proteínas de Plantas/química , Motivos de Aminoácidos , Parede Celular/química , Plantas/química , Prolina/química , Proteínas Quinases/química
2.
BMC Plant Biol ; 14: 29, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24423251

RESUMO

BACKGROUND: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. RESULTS: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif. CONCLUSIONS: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought.


Assuntos
Aquaporinas/metabolismo , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Aquaporinas/genética , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética
3.
FEBS Lett ; 595(20): 2593-2607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34427925

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) belong to the hydroxyproline-rich glycoprotein (HRGP) superfamily known to be involved in many plant developmental processes. Here, we characterized two pollen-expressed PERKs from Arabidopsis thaliana, PERK5 and PERK12. Pollen tube growth was impaired in single and double perk5-1 perk12-1 loss of function mutants, with an impact on seed production. When the segregation was analysed, a male gametophytic defect was found, indicating that perk5-1 and perk12-1 mutants carry deficient pollen transmission. Furthermore, perk5-1 perk12-1 displayed an excessive accumulation of pectins and cellulose at the cell wall of the pollen tubes. Our results indicate that PERK5 and PERK12 are necessary for proper pollen tube growth, highlighting their role in cell wall assembly and reactive oxygen species homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Prolina/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Plant ; 8(5): 734-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25655826

RESUMO

Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins (HRGPs), which include several groups of O-glycoproteins, including extensins (EXTs). Proline hydroxylation, an early post-translational modification (PTM) of HRGPs catalyzed by prolyl 4-hydroxylases (P4Hs), defines their subsequent O-glycosylation sites. In this work, our genetic analyses prove that P4H5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable functions but cannot replace P4H5. These three P4Hs are shown to be targeted to the secretory pathway, where P4H5 forms dimers with P4H2 and P4H13. Finally, we explore the impact of deficient proline hydroxylation on the cell wall architecture. Taken together, our results support a model in which correct peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Prolil Hidroxilases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosilação , Hidroxilação , Hidroxiprolina/metabolismo , Família Multigênica , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Prolil Hidroxilases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA