Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(8): 5373-5387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139939

RESUMO

In recent years, development of biopolymeric nanofibers as an active biodegradable packaging system has attracted specific attention. The objective of this research was to develop zein-based electrospun nanofibers (NFs) incorporated with geraniol-loaded nanoliposomes (G-loaded NLPs). Geraniol was encapsulated into NLPs with an efficiency of 79.23%. The particle size and zeta potential of G-loaded NLPs were 121.50 nm and -38.30 mV, respectively. The successful loading of geraniol in the NLPs was approved by Fourier transform infrared (FT-IR) spectroscopy. The liposomal vesicles showed spherical shapes. G-loaded NLPs were added in the zein-based electrospun NFs at three different concentrations (0.25, 0.5, and 1%w/v). All NFs samples exhibited fibrillar structure. The increase of NLPs concentration enhanced the thermal stability of the NFs. However, the crystalline structure of zein NFs did not change by the addition of G-loaded NLPs. The highest surface hydrophobicity was related to the NFs containing 1% G-loaded NLPs. The mechanical parameters of NFs depend on the concentration of NLPs. The NFs incorporated with G-loaded NLPs showed inhibition activity against four foodborne pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium) with an inhibition zone of 4.5-22 mm. Moreover, the α-diphenyl-ß-picrylhydrazyl (DPPH) scavenging activity of NFs samples was located at the range of 20%-48%. These findings represent the Efficiency of the G-loaded NLPs for use as bioactive compound in the zein-based NFs as an active packaging material.

2.
Int J Biol Macromol ; 230: 123119, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603723

RESUMO

Ixiolirion tataricum mucilage (ITM) was characterized and applied in fabrication of ITM/chitosan (CH) blend films activated by Foeniculum vulgare essential oil (FEO) in free and nanoliposomal forms. Uniform smooth surface structure, viscoelastic solid-like behavior and Newtonian nature of ITM were confirmed by morphological and rheological analyses. The prepared FEO nanoliposomes (FEO-NLPs) showed desirable properties in terms of particle size (57.2 nm), polydispersity index (0.243), zeta-potential (-17.6 mV), and encapsulation efficiency (85.2 %). The enhancing effects of FEO-NLPs and the adverse effects of free FEO on the crystalline, morphological and structural properties of films were confirmed by XRD, FE-SEM and ATR-FTIR tests. FEO-NLPs loaded films had better mechanical, thermal, water and gas barrier and antioxidant properties than neat film. Analysis also indicated the high controlled release of FEO from the films containing the nanoliposomal form of FEO. The films containing free FEO showed higher antibacterial activity against E. coli and S. aureus in comparison with FEO-NLPs loaded ones. The results showed the potential of FEO-NLPs loaded ITM/CH films for antioxidant food packaging applications.


Assuntos
Quitosana , Foeniculum , Óleos Voláteis , Antioxidantes/farmacologia , Antioxidantes/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Escherichia coli , Staphylococcus aureus , Polissacarídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos
3.
Int J Biol Macromol ; 200: 87-98, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998041

RESUMO

A new intelligent pH-sensitive colorimetric label was fabricated by immobilizing Ixiolirion tataricum anthocyanins (ITA) into biocellulose (bacterial nanocellulose; BNC) film and was then studied to determine how it can be used as a label for monitoring freshness/spoilage of shrimp during storage at 4 °C. The formation of new interactions between ITA and BNC film and disruption of crystalline structure of BNC after anthocyanins immobilization were approved by FT-IR and XRD analyses, respectively. According to FE-SEM observations, the porosity of the BNC network decreased after ITA incorporation. The fabricated BNC-ITA label showed a distinct color change from violet to green over the pH range of 4-12. The pH, total volatile basic nitrogen (TVB-N), total psychrophiles count (TPC), and the quantity of biogenic amines (histamine, cadaverine, putrescine, and tyramine) in the shrimp samples and their correlation with color changes on the label were measured over a 4-day storage period. Consistent with changes in levels of TVB-N, TPC, pH, and biogenic amines, a visually distinguishable color change occurred on the BNC-ITA label as blue (fresh), dark green (medium fresh), and kelly green (spoiled). This research showed that ITA as a novel pH-sensitive dye is a promising candidate for developing pH labels for seafood intelligent packaging.


Assuntos
Antocianinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA