Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 34(21): 6109-6116, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29722536

RESUMO

Titania nanoparticle-based thin films are highly attractive for a vast range of commercial applications. Although their application on polymer-based substrates is particularly appealing, the requirement of low process temperatures results in low mechanical stability. Highly crystalline anatase nanoparticles were used as the building blocks for coatings through a two-stage process. The main benefits of this method, over the more common sol-gel ones, are the relatively low temperature required for the production of metal oxide coatings, allowing the use of polymer-based substrates, and the defined crystallinity of the resulting thin films. Although in several cases moderate temperatures can be utilized for drying the films, the mechanical stability of the respective coatings remains a critical issue. In this contribution, we present a strategy to achieve network formation between TiO2 nanoparticles in a preformed thin film on the basis of the cross-linking of the functionalized nanoparticles. In the first stage, the nanoparticles were functionalized by dicarboxylic acids, concurrently leading to a stable colloidal dispersion that could be utilized for dip-coating to obtain TiO2 thin films with high homogeneity and optical transparence. During the second stage, the films were immersed in a solution of a diamine as the linker molecule, to achieve cross-linking between the nanoparticles within the film. It is demonstrated that indeed covalent bonding was realized and functional coatings with significantly enhanced mechanical properties were obtained by our strategy.

2.
Ann Work Expo Health ; 65(8): 966-978, 2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314505

RESUMO

Incidental ultrafine particles (UFPs) constitute a key pollutant in industrial workplaces. However, characterizing their chemical properties for exposure and toxicity assessments still remains a challenge. In this work, the performance of an aerosol concentrator (Versatile Aerosol Concentration Enrichment System, VACES) was assessed to simultaneously sample UFPs on filter substrates (for chemical analysis) and as liquid suspensions (for toxicity assessment), in a high UFP concentration scenario. An industrial case study was selected where metal-containing UFPs were emitted during thermal spraying of ceramic coatings. Results evidenced the comparability of the VACES system with online monitors in terms of UFP particle mass (for concentrations up to 95 µg UFP/m3) and between filters and liquid suspensions, in terms of particle composition (for concentrations up to 1000 µg/m3). This supports the applicability of this tool for UFP collection in view of chemical and toxicological characterization for incidental UFPs. In the industrial setting evaluated, results showed that the spraying temperature was a driver of fractionation of metals between UF (<0.2 µm) and fine (0.2-2.5 µm) particles. Potentially health hazardous metals (Ni, Cr) were enriched in UFPs and depleted in the fine particle fraction. Metals vaporized at high temperatures and concentrated in the UF fraction through nucleation processes. Results evidenced the need to understand incidental particle formation mechanisms due to their direct implications on particle composition and, thus, exposure. It is advisable that personal exposure and subsequent risk assessments in occupational settings should include dedicated metrics to monitor UFPs (especially, incidental).


Assuntos
Exposição Ocupacional , Material Particulado , Aerossóis , Monitoramento Ambiental , Humanos , Exposição Ocupacional/análise , Tamanho da Partícula , Material Particulado/análise , Local de Trabalho
3.
Int J Hyg Environ Health ; 222(6): 926-935, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31262702

RESUMO

Inhalation of airborne nanoparticles is a well-known source of potentially health-hazardous occupational exposures. Effective mitigation measures are necessary to reduce exposure, but also challenging to implement due to the different characteristics of each individual emission source and industrial scenario. The present paper describes four different exposure case studies in the ceramic industry and quantifies the effectiveness of mitigation strategies implemented during: ceramic tile processing by thermal spraying, laser ablation, the use of diesel engines, and tile firing. The mitigation measures for exposure reduction were tailored to each industrial scenario. The NP removal efficiency of source enclosure (partial/full) combined with local exhaust ventilation (LEV) were quantified to range between 65 and 85% when the enclosure was partial. The efficiency reached 99% with full enclosure and vigorous ventilation (Air Change per Hour; ACH = 132 h-1). The elimination of the source was the optimal strategy to minimize exposure in the case of diesel forklifts use. The conventional ceramic kilns used intensively (>10 years) generated high NP exposure concentrations (>106/cm3). Appropriate maintenance and enhanced sealing enabled the reduction of exposure down to 52% of the initial value. It must be added that technologically advanced kilns, enabled even greater NP reductions (down to 84%), compared to the conventional ones. This proves technological improvements can lead to significant reduction of work exposures. This work evidences the need for tailored mitigation measures due to the broad variety of potential sources and activities in industrial scenarios. The quantitative efficiency rates reported here may be valuable for the adequate parametrization of exposure prediction and risk assessment models.


Assuntos
Poluentes Ocupacionais do Ar , Exposição por Inalação/prevenção & controle , Nanopartículas , Exposição Ocupacional/prevenção & controle , Cerâmica , Humanos , Indústria Manufatureira , Emissões de Veículos
4.
Sci Total Environ ; 650(Pt 1): 1582-1590, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308844

RESUMO

Cycling and walking are promoted as means of transportation which can contribute to the reduction of traffic pollution in urban areas. However, cyclists and pedestrians may be exposed to high concentrations of air pollutants due to their proximity to vehicle emissions. Commercial face mask respirators are widely used, in both developing and developed countries, as an individual protective measure against particle pollution. However scientific data on the efficacy of face mask respirators in reducing airborne particle exposure is limited. In this study, a custom experimental set-up was developed in order to measure the effectiveness of nine different respirators under real environmental conditions in terms of particle mass concentration below 2.5 µm (PM2.5), particle number concentration (PNC), Lung Deposited Surface Area (LDSA) and Black Carbon concentration (BC). Face mask performances were assessed in a typical traffic affected urban background environment in the city of Barcelona under three different simulated breathing rates to investigate the influence of flow rate. Results showed a median face mask effectiveness for PM2.5 equal to 48% in a range of 14-96%, 19% in a range of 6%-61% for BC concentration, 19% in a range of 4%-63% for PNC and 22% in a range of 5%-65% for LDSA. For each pollutant under investigation, the best performance was found always with the same mask (N7) although it is not the most expensive (in a range of price of 1 to 44, its cost was 20 euros), which has a filter on the entire surface except for the 2 exhalation valves where air cannot enter but just exit and shows a good fit on the dummy head.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição por Inalação/prevenção & controle , Máscaras , Material Particulado/análise , Cidades , Humanos , Exposição por Inalação/estatística & dados numéricos , Roupa de Proteção , Emissões de Veículos/análise
5.
Sci Total Environ ; 686: 236-245, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176822

RESUMO

While exposure to traffic pollutants significantly decreases with distance from the curb, very dense urban architectures hamper such dispersion. Moreover, the building height reduces significantly the dispersion of pollutants. We have investigated the horizontal variability of Black Carbon (BC) and the vertical variability of NO2 and BC within the urban blocks. Increasing the distance from road BC concentrations decreased following an exponential curve reaching halving distances at 25 m (median), although with a wide variability among sites. Street canyons showed sharper fall-offs than open roads or roads next to a park. Urban background concentrations were achieved at 67 m distance on average, with higher distances found for more trafficked roads. Vertical fall-off of BC was less pronounced than the horizontal one since pollutants homogenize quickly vertically after rush traffic hours. Even shallower vertical fall-offs were found for NO2. For both pollutants, background concentrations were never reached within the building height. A street canyon effect was also found exacerbating concentrations at the lowest floors of the leeward side of the road. These inputs can be useful for assessing population exposure, air quality policies, urban planning and for models validation.

6.
Sci Total Environ ; 599-600: 2065-2073, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28558429

RESUMO

Atmospheric plasma spraying (APS) is a frequently used technique to produce enhanced-property coatings for different materials in the ceramic industry. This work aimed to characterise and quantify the impact of APS on workplace exposure to airborne particles, with a focus on ultrafine particles (UFPs, <100nm) and nanoparticles (<50nm). Particle number, mass concentrations, alveolar lung deposited surface area concentration, and size distributions, in the range 10nm-20µm were simultaneously monitored at the emission source, in the potential worker breathing zone, and in outdoor air. Different input materials (known as feedstock) were tested: (a) micron-sized powders, and (b) suspensions containing submicron- or nano-sized particles. Results evidenced significantly high UFP concentrations (up to 3.3×106/cm3) inside the spraying chamber, which impacted exposure concentrations in the worker area outside the spraying chamber (up to 8.3×105/cm3). Environmental release of UFPs was also detected (3.9×105/cm3, outside the exhaust tube). Engineered nanoparticle (ENP) release to workplace air was also evidenced by TEM microscopy. UFP emissions were detected during the application of both micron-sized powder and suspensions containing submicron- or nano-sized particles, thus suggesting that emissions were process- (and not material-) dependent. An effective risk prevention protocol was implemented, which resulted in a reduction of UFP exposure in the worker area. These findings demonstrate the potential risk of occupational exposure to UFPs during atmospheric plasma spraying, and raise the need for further research on UFP formation mechanisms in high-energy industrial processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA