Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2306551120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37708201

RESUMO

Coarsening of two-phase systems is crucial for the stability of dense particle packings such as alloys, foams, emulsions, or supersaturated solutions. Mean field theories predict an asymptotic scaling state with a broad particle size distribution. Aqueous foams are good model systems for investigations of coarsening-induced structures, because the continuous liquid as well as the dispersed gas phases are uniform and isotropic. We present coarsening experiments on wet foams, with liquid fractions up to their unjamming point and beyond, that are performed under microgravity to avoid gravitational drainage. As time elapses, a self-similar regime is reached where the normalized bubble size distribution is invariant. Unexpectedly, the distribution features an excess of small roaming bubbles, mobile within the network of jammed larger bubbles. These roaming bubbles are reminiscent of rattlers in granular materials (grains not subjected to contact forces). We identify a critical liquid fraction [Formula: see text], above which the bubble assembly unjams and the two bubble populations merge into a single narrow distribution of bubbly liquids. Unexpectedly, [Formula: see text] is larger than the random close packing fraction of the foam [Formula: see text]. This is because, between [Formula: see text] and [Formula: see text], the large bubbles remain connected due to a weak adhesion between bubbles. We present models that identify the physical mechanisms explaining our observations. We propose a new comprehensive view of the coarsening phenomenon in wet foams. Our results should be applicable to other phase-separating systems and they may also help to control the elaboration of solid foams with hierarchical structures.

2.
Langmuir ; 40(1): 84-90, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128069

RESUMO

Many ionic surfactants, such as sodium dodecyl sulfate (SDS) crystallize out of solution if the temperature falls below the crystallization boundary. The crystallization temperature is impacted by solution properties and can be decreased with the addition of salt. We studied SDS crystallization at liquid/vapor interfaces from solutions at high ionic strength (sodium chloride). We show that the surfactant crystals at the surface grow from adsorbed SDS molecules, as evidenced by the preferential orientation of the crystals identified by using grazing incidence X-ray diffraction. We find a unique time scale for the crystal growth from the evolution of structure, surface tension, and visual inspection, which can be controlled through varying the SDS or NaCl concentrations.

3.
Biophys J ; 122(10): 1846-1857, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37077048

RESUMO

Single-particle electron cryo-microscopy (cryo-EM) has become an effective and straightforward approach to determine the structure of membrane proteins. However, obtaining cryo-EM grids of sufficient quality for high-resolution structural analysis remains a major bottleneck. One of the difficulties arises from the presence of detergents, which often leads to a lack of control of the ice thickness. Amphipathic polymers such as amphipols (APols) are detergent substitutes, which have proven to be valuable tools for cryo-EM studies. In this work, we investigate the physico-chemical behavior of APol- and detergent-containing solutions and show a correlation with the properties of vitreous thin films in cryo-EM grids. This study provides new insight on the potential of APols, allowing a better control of ice thickness while limiting protein adsorption at the air-water interface, as shown with the full-length mouse serotonin 5-HT3A receptor whose structure has been solved in APol. These findings may speed up the process of grid optimization to obtain high-resolution structures of membrane proteins.


Assuntos
Detergentes , Tensoativos , Animais , Camundongos , Tensoativos/química , Microscopia Crioeletrônica , Elétrons , Gelo , Proteínas de Membrana
4.
Soft Matter ; 19(33): 6267-6279, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37551883

RESUMO

We report foam coarsening studies which were performed in the International Space Station (ISS) to suppress drainage due to gravity. Foams and bubbly liquids with controlled liquid fractions ϕ between 15 and 50% were investigated to study the transition between bubble growth laws previously reported near the dry limit ϕ → 0 and the dilute limit ϕ → 1 (Ostwald ripening). We determined the coarsening rates for the driest foams and the bubbly liquids, they are in close agreement with theoretical predictions. We observe a sharp cross-over between the respective laws at a critical value ϕ*. At liquid fractions beyond this transition, neighboring bubbles are no longer all in contact, like at a jamming transition. Remarkably ϕ* is significantly larger than the random close packing volume fraction of the bubbles ϕrcp which was determined independently. We attribute the differences between ϕ* and ϕrcp to a weakly adhesive bubble interaction that we have studied in complementary ground-based experiments.

5.
Langmuir ; 38(30): 9129-9135, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35849797

RESUMO

Marangoni flow is among the most intriguing effects in complex fluids and interfacial science. We report here on a fluorescent surfactant that enables to monitor Marangoni flows under quasi-steady conditions, without the need of invasive tracers. The Marangoni zone is clearly visible, and its dynamics can be quantitatively probed both at the air-water interface and within the bulk. In particular, we show that the Marangoni zone exhibits unexpected dependencies with the container size and water depth with the pyrene-tailed surfactant. Additionally, recirculation flows are evidenced by fluorescence near the bottom of the container. This fluorescent probe may find other useful applications in deciphering the complexity of the ubiquitous Marangoni effect.

6.
Soft Matter ; 18(14): 2842-2850, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343992

RESUMO

The elastic properties of a soft matter material can be greatly altered by the presence of solid inclusions whose microscopic properties, such as their size and interactions, can have a dramatic effect. In order to shed light on these effects we use extensive rheology computer simulations to investigate colloidal gels with solid inclusions of different sizes. We show that the elastic properties vary in a highly non-trivial way as a consequence of the interactions between the gel backbone and the inclusions. In particular, we show that the key aspects are the presence of the gel backbone and its mechanical alteration originating from the inclusions. To confirm our observations and their generality, we performed experiments on an emulsion that presents strong analogies with colloidal gels and confirms the trends observed in the simulations.

7.
Soft Matter ; 17(9): 2404-2409, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33480956

RESUMO

Although street artists have the know-how to blow bubbles over one meter in length, the bubble width is typically determined by the size of the hoop, or wand they use. In this article we explore a regime in which, by blowing gently downwards, we generate bubbles with radii up to ten times larger than the wand. We observe the big bubbles at lowest air speeds, analogous to the dripping mode observed in droplet formation. We also explore the impact of the surfactant chosen to stabilize the bubbles. We are able to create bubbles of comparable size using either Fairy liquid, a commercially available detergent often used by street artists, or sodium dodecyl sulfate (SDS) solutions. The bubbles obtained from Fairy liquid detach from the wand and are stable for several seconds, however those from SDS tend to burst just before detachment.

8.
Soft Matter ; 16(9): 2249-2255, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32026912

RESUMO

We explore the evolution of the mechanical properties of a coarsening foam containing colloidal particles that undergo a sol-gel transition in the continuous phase. This enables us to investigate the impact of elasto-capillarity on foam mechanics over a wide range of elasto-capillary numbers. Right after initiating aggregation the foam mechanics is predominantly determined by the elasticity of the bubbles, while the contributions of the continuous phase become dominant as the colloidal particles form a gel. Taking into account the confined configuration of the foam skeleton for the formation of a space spanning gel, we find that for elasto-capillary numbers exceeding unity the foam mechanics can be described as a simple linear combination of the contributions due to respectively the bubble elasticity and the elastic skeleton. Surprisingly, the contributions of the elastic skeleton to the overall foam mechanics are larger for smaller elasto-capillary numbers, scaling as the inverse of the capillary number.

9.
Langmuir ; 34(5): 1855-1864, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29309160

RESUMO

We have studied adsorbed layers of cetyltrimethylammonium bromide (CTAB) at air-water interfaces in the presence of added electrolyte. Fast bubble compression/expansion measurements were used to obtain the surface equation of state, i.e., the surface tension vs CTAB surface concentration dependence. We show that while a simple model where the surfactant molecules are assumed to be noninteracting is insufficient to describe the measured response of the surfactant layer, a modified Frumkin equation where the local interactions between the molecular components depend on their surface concentration captures the response. The variation of the effective interactions in the surfactant layer in the model shows that the interactions in the surfactant layer change from effectively repulsive to attractive with increasing surface concentration. Molecular dynamics simulations are performed to probe the origins of the change in the interactions. The simulations indicate that already at low surface concentrations the surfactants aggregate as highly dynamic rafts with surfactant orientation parallel to the interface. Increasing the concentration leads to a change in the assembly morphology at the interface: the surfactant layer thickens and the surfactants sample a range of tilted orientations with respect to the interfacial plane. The change from transient raftlike assemblies to dynamical aggregates at the interface involves a clear increase in the degree of counterion binding: we speculate that the flip of the effective interaction parameter in the model used to interpret the experimental results could result from this. The work here presents basic steps toward a proper understanding of the molecular organization and interactions of surfactants at an air-water interface. This is crucially important in understanding macroscopic properties of surfactant-stabilized systems such as foams, emulsions, and colloidal dispersions.

10.
Langmuir ; 34(37): 11076-11085, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30149714

RESUMO

The interfacial and foam properties of a model system based on the mixture between myristic acid and choline hydroxide have been investigated as a function of the molar ratio ( R) between these two components and temperature. The aim of this study was to obtain insight on the links between the self-assemblies in bulk and in the foam liquid channels, the surfactant packing at the interface, and the resulting foam properties and stability. A multiscale approach was used combining small angle neutron scattering, specular neutron reflectivity, surface tension measurements, and photography. We highlighted three regimes of foam stability in this system by modifying R: high foam stability for R < 1, intermediate at R ∼ 1, and low for R > 1. The different regimes come from the pH variations in bulk linked to R. The pH plays a crucial role at the molecular scale by setting the ionization state of the myristic acid molecules adsorbed at the gas-liquid interface, which in turn controls both the properties of the monolayer and the stability of the films separating the bubbles. The main requirement to obtain stable foams is to set the pH close to the p Ka in order to have a mixture of protonated and ionized molecules giving rise to intermolecular hydrogen bonds. As a result, a dense monolayer is formed at the interface with a low surface tension. R also modifies the structure of self-assembly in bulk and therefore within the foam, but such a morphological change has only a minor effect on the foam stability. This study confirms that foam stability in surfactant systems having a carboxylic acid as polar headgroup is mainly linked to the ionization state of the molecules at the interface.

11.
Langmuir ; 33(29): 7305-7311, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28669193

RESUMO

Foams are ultrastable when all the aging processes arrest. We make such foams by precipitating sodium dodecyl sulfate with potassium chloride during the foaming process. The precipitate crystals adsorb onto the bubble surfaces to arrest coarsening and stop drainage by blocking in the interstices around the bubbles. However, if the concentration of SDS is too high, the foams are no longer ultrastable. The transition is sudden and corresponds to the point at which significant dodecyl sulfate remains in solution. The presence of the noncrystallized surfactant allows the foam to coarsen leading to the eventual disappearance of the foams, even if the crystals in the continuous phase can still block drainage. The transition occurs as the concentration of nonsolubilized KCl becomes higher than the concentration of SDS, giving us a linear stability boundary. The system offers an interesting alternative to other types of particles because the surfactant crystals break and reform as the temperature is cycled, which makes for reusable solutions and stimulable foams.

12.
Soft Matter ; 13(22): 4132-4141, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28555683

RESUMO

Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.

13.
Soft Matter ; 13(39): 7197-7206, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28930353

RESUMO

The self-aggregation, surface properties and foamability of the catanionic surfactant mixture cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfonate (SOSo) have been investigated to obtain insight on the relation between bulk nanostructures, surfactant packing, and foam stability and aging. Light microscopy, SANS, cryo-TEM, DLS, surface tension, rheometry and direct photography were used to characterize mixtures with varying CTAB molar fraction, xCTAB. In the bulk, self-assembly is richer in the excess CTAB region than in the excess SOSo one. Starting from neat CTAB micelles and on addition of anionic surfactant, there is a change from small ellipsoidal micelles (1 < xCTAB ≤ 0.80) to large rodlike micelles (0.65 ≤ xCTAB ≤ 0.55) and then to vesicles (0 < xCTAB ≤ 0.50), with coexistence regions in between; SOSo-rich mixtures are thus dominated by vesicles. High size polydispersity for the micelles and vesicles is an intrinsic feature of this system. Foam stability is concomitantly impacted by xCTAB. SOSo is a small mobile molecule and so it disrupts foam stability, irrespective of the presence of vesicles. Foams are thus only stable in the CTAB-rich regions, and SANS shows that the shape of micelles and vesicles is unchanged inside the foam. Foam drainage is thereby mostly controlled by the presence of the elongated micelles through the solution viscosity, whereas coarsening is influenced by dense surfactant packing at the gas-liquid interfaces.

14.
Soft Matter ; 12(3): 905-13, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26554500

RESUMO

Rising foams created by continuously blowing gas into a surfactant solution are widely used in many technical processes, such as flotation. The prediction of the liquid fraction profile in such flowing foams is of particular importance since this parameter controls the stability and the rheology of the final product. Using drift flux analysis and recently developed semi-empirical expressions for foam permeability and osmotic pressure, we build a model predicting the liquid fraction profile as a function of height. The theoretical profiles are very different if the interfaces are considered as mobile or rigid, but all of our experimental profiles are described by the model with mobile interfaces. Even the systems with dodecanol are well known to behave as rigid in forced drainage experiments. This is because in rising foams the liquid fraction profile is fixed by the flux at the bottom of the foam. Here the foam is wet with higher permeability and the interfaces are not in equilibrium. These results demonstrate once again that it is not only the surfactant system that controls the mobility of the interface, but also the hydrodynamic problem under consideration. For example liquid flow through the foam during generation or in forced drainage is intrinsically different.

15.
Angew Chem Int Ed Engl ; 54(33): 9533-6, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26120060

RESUMO

Ultrastable foams are made very simply by adding salt (NaCl or KCl) to sodium dodecyl sulfate. The addition of high concentrations of salt leads to the precipitation of the surfactant on the bubble surfaces and as crystals in the interstices between the bubbles. As a consequence, the ageing of the foams is stopped to make them stable indefinitely, or until they are heated above the melting temperature of the crystals. The use of KCl is shown to be much more effective than that of NaCl because potassium dodecyl sulfate has a higher melting temperature and faster rates of crystallization. The crystalline structures have been investigated inside the foam using small angle neutron scattering. The larger lattice spacing of the crystals formed with NaCl in comparison with KCl has been evidenced. These simple temperature stimulable foams could have many potential applications.

16.
Soft Matter ; 10(36): 6975-83, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24832218

RESUMO

We have studied foams stabilised by surfactant-decorated nanoparticles adsorbed at the bubble surfaces. We show that the controlled compression of a single bubble allows one to understand the coarsening behavior of these foams. When bubbles are compressed, the particles become tightly packed in the surface layer. They lose their mobility, and the interface becomes solid-like when the jammed state is reached. Further compression leads to interfacial buckling characterised by crumpled surfaces. We find that the surface concentration of particles at which the jamming and the buckling transitions occur are independent of the surfactant concentration. This is a surprising feature. It suggests that the surfactants are mandatory to help the particles adsorb at the interface and that they change the equilibrium surface concentration of the decorated particles. But they do not affect the surface properties once the particles are adsorbed. We measured the compression elastic modulus of the surface in the jammed state and found it to be compatible with the Gibbs condition for which the spontaneous dissolution of bubbles is arrested. Due to this effect, the coarsening process of a foam composed of many close-packed bubbles occurs in two steps. In the first step, coarsening is slow and coalescence of the bigger bubbles is observed. In the second step, a number of very small bubbles remains, which exhibit crumpled surfaces and are stable over long times. This suggests that foam coarsening is arrested once the smallest bubbles become fully covered after the initial shrinking step.

17.
Anal Chem ; 85(12): 5850-6, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23713852

RESUMO

Synthesis of surfactant-polyelectrolyte nanoparticles was carried out in a microfluidic device with a fine control over the size and the polydispersity. An anionic polysaccharide (sodium carboxymethylcellulose, CMC) solution was focused using a cationic surfactant (dodecyl trimethylammonium bromide, DTAB) solution in a microfluidic channel at selected ratios of flow rates and reagent concentrations. The methodology ensured a controlled mixing kinetics and a uniform distribution of charges at the mixing interface. The resulting nanoparticles exhibited remarkably well-defined and repeatable size distributions, with hydrodynamic diameters tunable from 50 up to 300 nm and polydispersity index around 0.1 in most cases. Microfluidic-assisted self-assembly may be an efficient way to produce well-controlled polyelectrolyte-based nanoparticles suitable for colloidal science as well as for gene delivery applications.


Assuntos
Carboximetilcelulose Sódica/química , Hidrodinâmica , Microfluídica/métodos , Nanopartículas/química , Tensoativos/química , Tamanho da Partícula
18.
Nat Commun ; 14(1): 1125, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854671

RESUMO

Foams are unstable jammed materials. They evolve over timescales comparable to their "time of use", which makes the study of their destabilisation mechanisms crucial for applications. In practice, many foams are made from viscoelastic fluids, which are observed to prolong their lifetimes. Despite their importance, we lack understanding of the coarsening mechanism in such systems. We probe the effect of continuous phase viscoelasticity on foam coarsening with foamed emulsions. We show that bubble size evolution is strongly slowed down and foam structure hugely impacted. The main mechanisms responsible are the absence of continuous phase redistribution and a non-trivial link between foam structure and mechanical properties. These combine to give spatially heterogeneous coarsening. Beyond their importance in the design of foamy materials, the results give a macroscopic vision of phase separation in a viscoelastic medium.

19.
Chemphyschem ; 12(1): 150-60, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21226196

RESUMO

We have synthesised a new, pyrene-based, low-molecular-mass, amphiphilic molecule that displays a wealth of properties of potential interest for aggregation and interfacial applications. In order to elucidate some of the key properties of this molecule, which consists of a pyrene-containing hydrophobic head and a short PEG-based hydrophilic tail, we investigate herein some aspects of its concentration-dependent behaviour in aqueous solutions. We show that the inclusion of the hydrophobic pyrene group not only provides the molecule with intriguing bulk and interfacial properties down to low concentrations, but also with various means of assessing its aggregation behaviour by means of its well-characterised fluorescence properties. Combining a range of fluorescence techniques with microscopic imaging (optical and Cryo-TEM), interfacial tension measurements and foaming studies, we have been able to identify and characterise three concentration-dependant regimes. At low concentrations, the molecule is dissolved in monomeric form. At intermediate concentrations, labile aggregates are formed, which, at higher concentrations, give way to aggregates containing pre-associated pyrenes. Our measurements strongly imply that the latter aggregates are hexagonally close-packed tubular micelles. In this latter regime we also find a range of micron-sized precipitates. Additionally, the molecule displays strong interfacial activity, yet a surprisingly slow dynamics of interfacial adsorption. Finally, we demonstrate the possibility of using it to visualize interfaces and also create reasonably stable (1 hour) and fluorescing foams.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Pirenos/química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Peso Molecular , Tamanho da Partícula , Polietilenoglicóis/química , Espectrometria de Fluorescência , Propriedades de Superfície
20.
Langmuir ; 27(24): 14947-57, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22040020

RESUMO

Identification of the key physicochemical parameters of proteins that determine their interfacial properties is still incomplete and represents a real stake challenge, especially for food proteins. Many studies have thus consisted in comparing the interfacial behavior of different proteins, but it is difficult to draw clear conclusions when the molecules are completely different on several levels. Here the adsorption process of a model protein, the hen egg-white lysozyme, and the same protein that underwent a thermal treatment in the dry state, was characterized. The consequences of this treatment have been previously studied: net charge and hydrophobicity increase and lesser protein stability, but no secondary and tertiary structure modification (Desfougères, Y.; Jardin, J.; Lechevalier, V.; Pezennec, S.; Nau, F. Biomacromolecules 2011, 12, 156-166). The present study shows that these slight modifications dramatically increase the interfacial properties of the protein, since the adsorption to the air-water interface is much faster and more efficient (higher surface pressure). Moreover, a thick and strongly viscoelastic multilayer film is created, while native lysozyme adsorbs in a fragile monolayer film. Another striking result is that completely different behaviors were observed between two molecular species, i.e., native and native-like lysozyme, even though these species could not be distinguished by usual spectroscopic methods. This suggests that the air-water interface could be considered as a useful tool to reveal very subtle differences between protein molecules.


Assuntos
Físico-Química , Muramidase/química , Água/química , Adsorção , Ar , Animais , Galinhas , Dessecação , Elasticidade , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia de Força Atômica , Conformação Molecular , Muramidase/análise , Pressão , Reologia , Análise Espectral , Eletricidade Estática , Propriedades de Superfície , Termodinâmica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA