Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(12): 8392-8402, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36892423

RESUMO

The reaction mechanism of dimethyl carbonate (DMC) production over ZrO2 from CO2 and CH3OH is well-known, but the level of understanding has not improved in the last decade. Most commonly, the reaction mechanism has been explored in the gas phase, whilst DMC production occurs in the liquid phase. To overcome this contradiction, we exploited in situ ATR-IR spectroscopy to study DMC formation over ZrO2 in the liquid phase. A multiple curve resolution-alternate least square (MCR-ALS) approach was applied to spectra collected during the CO2/CH3OH interaction with the catalyst surface, leading to the identification of five pure components with their respective concentration profiles. CO2 and CH3OH activation to carbonates and methoxide species was found to strongly depend on the reaction temperature. Low temperature prevents methanol dissociation leaving a catalyst covered with stable carbonates, whilst higher temperature decreases the stability of the carbonates and enhances the formation of methoxides. A reaction path involving the methoxide/carbonate interaction at the surface was observed at low temperature (≤50 °C). We propose that a different reaction path, independent of carbonate formation and involving the direct CO2/methoxide interplay, occurs at 70 °C.

2.
Angew Chem Int Ed Engl ; 62(25): e202302087, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37062698

RESUMO

CO2 hydrogenation to methane is gaining increasing interest as one of the most promising ways to store intermittent renewable energy in the form of chemical fuels. Ni particles supported on CeO2 represent a highly efficient, stable and inexpensive catalyst for this reaction. Herein, Ni-doped CeO2 nanoparticles were tested for CO2 methanation showing an extremely high Ni mass-specific activity and CH4 selectivity. Operando characterization reveals that this performance is tightly associated with ionic Νi and Ce3+ surface sites, while formation of metallic Ni does not seem to considerably promote the reaction. Theoretical calculations confirmed the stability of interstitial ionic Ni sites on ceria surfaces and highlighted the role of Ce-O frustrated Lewis pair (FLP), Ni-O classical Lewis pair (CLP) and Ni-Ce pair sites to the activation of H2 and CO2 molecules. To a large extent, the theoretical predictions were validated by in situ spectroscopy under H2 and CO2 : H2 gaseous environments.


Assuntos
Dióxido de Carbono , Níquel , Gases , Hidrogenação , Íons
3.
J Phys Chem Lett ; 15(16): 4494-4500, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38634706

RESUMO

In the last few decades, massive effort has been expended in heterogeneous catalysis to develop new materials presenting high conversion, selectivity, and stability even under high-temperature and high-pressure conditions. In this context, CO2 hydrogenation is an interesting reaction where the catalyst local structure is strongly related to the development of an active and stable material under hydrothermal conditions at T/P > 300 °C/30 bar. In order to clarify the relationship between catalyst local ordering and its activity/stability, we herein report a combined laboratory and synchrotron investigation of aliovalent element (Ce/Zn/Ga)-containing ZrO2 matrixes. The results reveal the influence of similar average structures with different short-range orderings on the catalyst properties. Moreover, a further step toward the comprehension of the oxygen vacancy formation mechanism in Ce- and Ga-ZrO2 catalysts is reported. Finally, the reported results illustrate a robust method to guide local structure determination and ultimately help to avoid overuse of the "solid solution" definition.

4.
J Phys Chem Lett ; 15(14): 3962-3967, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569092

RESUMO

Copper single-site catalysts supported on Zr-based metal-organic frameworks (MOFs) are well-known systems in which the nature of the active sites has been deeply investigated. Conversely, the redox chemistry of the Ce-counterparts is more limited, because of the often-unclear Cu2+/Cu+ and Ce4+/Ce3+ pairs behavior. Herein, we studied a novel Cu2+ single-site catalyst supported on a defective Ce-MOF, Cu/UiO-67(Ce), as a catalyst for the CO oxidation reaction. Based on a combination of in situ DRIFT and operando XAS spectroscopies, we established that Cu+ sites generated during catalysis play a pivotal role. Moreover, the oxygen vacancies associated with Ce3+ sites and presented in the defective Cu/UiO-67(Ce) material are able to activate the O2 molecules, closing the catalytic cycle. The results presented in this work open a new route for the design of active and stable single-site catalysts supported on defective Ce-MOFs.

5.
Nanomaterials (Basel) ; 13(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678025

RESUMO

The development of Ce-based materials is directly dependent on the catalyst surface defects, which is caused by the calcination steps required to increase structural stability. At the same time, the evaluation of cerium's redox properties under reaction conditions is of increasing relevant importance. The synthesis of Ce-UiO-66 and CeZr-UiO-66 and their subsequent calcination are presented here as a simple and inexpensive approach for achieving homogeneous and stable CeO2 and CeZrOx nanocrystals. The resulting materials constitute an ideal case study to thoroughly understand cerium redox properties. The Ce3+/Ce4+ redox properties are investigated by H2-TPR experiments exploited by in situ FT-IR and Ce M5-edge AP-NEXAFS spectroscopy. In the latter case, Ce3+ formation is quantified using the MCR-ALS protocol. FT-IR is then presented as a high potential/easily accessible technique for extracting valuable information about the cerium oxidation state under operating conditions. The dependence of the OH stretching vibration frequency on temperature and Ce reduction is described, providing a novel tool for qualitative monitoring of surface oxygen vacancy formation. Based on the reported results, the molecular absorption coefficient of the Ce3+ characteristic IR transition is tentatively evaluated, thus providing a basis for future Ce3+ quantification through FT-IR spectroscopy. Finally, the FT-IR limitations for Ce3+ quantification are discussed.

6.
ACS Catal ; 13(13): 9171-9180, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37441231

RESUMO

In this work, we have synthesized through an efficient electrostatic deposition a Pt single-atom catalyst (SAC) supported on a Ce-MOF. The basic solution employed in the impregnation process favors the deprotonation of the hydroxyl groups allocated on the clusters that can easily interact with the cationic Pt species. The resulting material, denoted as Pt/UiO-66(Ce), shows an increment of Ce3+ content, as demonstrated by UV-vis and Ce L3-edge XANES spectroscopy. These Ce3+ species and their corresponding oxygen vacancies are able to accommodate very disperse Pt single sites. Moreover, Pt L3-edge XANES and CO-FTIR spectroscopy confirm the cationic nature of the supported Ptδ+ (2+ < δ < 4+). For comparison purpose, we have synthesized and characterized a well-known Pt single-site catalyst supported on nanocrystalline ceria, denoted as Pt/nCeO2. Since the simultaneous presence of Ce3+ and Ptδ+ on the MOF clusters were able to activate the oxygen molecules and the CO molecule, respectively, we tested Pt/UiO-66(Ce) for the CO oxidation reaction. Interestingly, this catalyst showed ∼six-fold increment in activity in comparison with the traditional Pt/nCeO2 material. Finally, the characterization after catalysis reveals that the Pt nature is preserved and that the activity is maintained during 14 h at 100 °C without any evidence of deactivation.

7.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836313

RESUMO

The interaction between metal particles and the oxide support, the so-called metal-support interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic evolution of these interactions under reactive gas atmospheres is crucial to comprehending the structure-performance relationship and eventually designing new catalysts with enhanced properties. Cobalt supported on TiO2 (Co/TiO2) is an industrially relevant catalyst applied in Fischer-Tropsch synthesis. Although it is widely acknowledged that Co/TiO2 is restructured during the reaction process, little is known about the impact of the specific gas phase environment at the material's surface. The combination of soft and hard X-ray photoemission spectroscopies are used to investigate in situ Co particles supported on pure and NaBH4-modified TiO2 under H2, O2, and CO2:H2 gas atmospheres. The combination of soft and hard X-ray photoemission methods, which allows for simultaneous probing of the chemical composition of surface and subsurface layers, is one of the study's unique features. It is shown that under H2, cobalt particles are encapsulated below a stoichiometric TiO2 layer. This arrangement is preserved under CO2 hydrogenation conditions (i.e., CO2:H2), but changes rapidly upon exposure to O2. The pretreatment of the TiO2 support with NaBH4 affects the surface mobility and prevents TiO2 spillover onto Co particles.

8.
ACS Appl Mater Interfaces ; 15(4): 5218-5228, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688511

RESUMO

The valorization of CO2 to produce high-value chemicals, such as methanol and hydrocarbons, represents key technology in the future net-zero society. Herein, we report further investigation of a PdZn/ZrO2 + SAPO-34 catalyst for conversion of CO2 and H2 into propane, already presented in a previous work. The focus of this contribution is on the scale up of this catalyst. In particular, we explored the effect of mixing (1:1 mass ratio) and shaping the two catalyst functions into tablets and extrudates using an alumina binder. Their catalytic performance was correlated with structural and spectroscopic characteristics using methods such as FT-IR and X-ray absorption spectroscopy. The two scaled-up bifunctional catalysts demonstrated worse performance than a 1:1 mass physical mixture of the two individual components. Indeed, we demonstrated that the preparation negatively affects the element distribution. The physical mixture is featured by the presence of a PdZn alloy, as demonstrated by our previous work on this sample and high hydrocarbon selectivity among products. For both tablets and extrudates, the characterization showed Zn migration to produce Zn aluminates from the alumina binder phase upon reduction. Moreover, the extrudates showed a remarkable higher amount of Zn aluminates before the activation rather than the tablets. Comparing tablets and extrudates with the physical mixture, no PdZn alloy was observed after activation and only the extrudates showed the presence of metallic Pd. Due to the Zn migration, SAPO-34 poisoning and subsequent deactivation of the catalyst could not be excluded. These findings corroborated the catalytic results: Zn aluminate formation and Pd0 separation could be responsible for the decrease of the catalytic activity of the extrudates, featured by high methane selectivity and unconverted methanol, while tablets displayed reduced methanol conversion to hydrocarbons mainly attributed to the partial deactivation of the SAPO-34.

9.
ACS Appl Mater Interfaces ; 15(12): 15396-15408, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917679

RESUMO

Frustrated Lewis pairs (FLPs), discovered in the last few decades for homogeneous catalysts and in the last few years also for heterogeneous catalysts, are stimulating the scientific community's interest for their potential in small-molecule activation. Nevertheless, how an FLP activates stable molecules such as CO2 is still undefined. Through a careful spectroscopic study, we here report the formation of FLPs over a highly defective CeO2 sample prepared by microwave-assisted synthesis. Carbon dioxide activation over FLP is shown to occur through a bidentate carbonate bridging the FLP and implying a Ce3+-to-CO2 charge transfer, thus enhancing its activation. Carbon dioxide reaction with methanol to form monomethylcarbonate is here employed to demonstrate active roles of FLP and, eventually, to propose a reaction mechanism clarifying the role of Ce3+ and oxygen vacancies.

10.
Chem Mater ; 35(24): 10434-10445, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162044

RESUMO

ZnO-ZrO2 mixed oxide (ZnZrOx) catalysts are widely studied as selective catalysts for CO2 hydrogenation into methanol at high-temperature conditions (300-350 °C) that are preferred for the subsequent in situ zeolite-catalyzed conversion of methanol into hydrocarbons in a tandem process. Zn, a key ingredient of these mixed oxide catalysts, is known to volatilize from ZnO under high-temperature conditions, but little is known about Zn mobility and volatility in mixed oxides. Here, an array of ex situ and in situ characterization techniques (scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Infrared (IR)) was used to reveal that Zn2+ species are mobile between the solid solution phase with ZrO2 and segregated and/or embedded ZnO clusters. Upon reductive heat treatments, partially reversible ZnO cluster growth was observed above 250 °C and eventual Zn evaporation above 550 °C. Extensive Zn evaporation leads to catalyst deactivation and methanol selectivity decline in CO2 hydrogenation. These findings extend the fundamental knowledge of Zn-containing mixed oxide catalysts and are highly relevant for the CO2-to-hydrocarbon process optimization.

11.
JACS Au ; 1(10): 1719-1732, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723275

RESUMO

The production of carbon-rich hydrocarbons via CO2 valorization is essential for the transition to renewable, non-fossil-fuel-based energy sources. However, most of the recent works in the state of the art are devoted to the formation of olefins and aromatics, ignoring the rest of the hydrocarbon commodities that, like propane, are essential to our economy. Hence, in this work, we have developed a highly active and selective PdZn/ZrO2+SAPO-34 multifunctional catalyst for the direct conversion of CO2 to propane. Our multifunctional system displays a total selectivity to propane higher than 50% (with 20% CO, 6% C1, 13% C2, 10% C4, and 1% C5) and a CO2 conversion close to 40% at 350 °C, 50 bar, and 1500 mL g-1 h-1. We attribute these results to the synergy between the intimately mixed PdZn/ZrO2 and SAPO-34 components that shifts the overall reaction equilibrium, boosting CO2 conversion and minimizing CO selectivity. Comparison to a PdZn/ZrO2+ZSM-5 system showed that propane selectivity is further boosted by the topology of SAPO-34. The presence of Pd in the catalyst drives paraffin production via hydrogenation, with more than 99.9% of the products being saturated hydrocarbons, offering very important advantages for the purification of the products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA