Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1436(1): 70-97, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30008177

RESUMO

Long-term sustainable development of European offshore wind energy requires knowledge of the best places for installing offshore wind farms. To achieve this, a good knowledge of wind resources is needed, as well as knowledge of international, European, and national regulations regarding conflict management, marine environment conservation, biodiversity protection, licensing processes, and support regimes. Such a multidisciplinary approach could help to identify areas where wind resources are abundant and where conflicts with other interests are scarce, support measures are greater, and licensing processes are streamlined. An overview of offshore wind power studies at present, and of their future projections for the 21st century, allows for determining the optimal European locations to install or maintain offshore wind farms. Only northern Europe, the northwest portion of the Iberian Peninsula, the Gulf of Lyon, the Strait of Gibraltar, and the northwest coast of Turkey show no change or increase in wind power, revealing these locations as the most suitable for installing and maintaining offshore wind farms in the future. The installation of wind farms is subject to restrictions established under international law, European law, and the domestic legal framework of each EU member state. Europe is moving toward streamlining of licensing procedures, reducing subsidies, and implementing auction systems.


Assuntos
Biodiversidade , Clima , Modelos Biológicos , Vento , Europa (Continente)
2.
J Biomed Mater Res A ; 84(2): 364-76, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17618521

RESUMO

A new bioactive scaffold was prepared from a binary polysaccharide mixture composed of a polyanion (alginate) and a polycation (a lactose-modified chitosan, chitlac). Its potential use for articular chondrocytes encapsulation and cartilage reconstructive surgery applications has been studied. The hydrogel combines the ability of alginate to act as a 3D supporting structure with the capability of the second component (chitlac) to provide interactions with porcine articular chondrocytes. Physico-chemical characterization of the scaffold was accomplished by gel kinetics and compression measurements and demonstrated that alginate-chitlac mixture (AC-mixture) hydrogels exhibit better mechanical properties when compared with sole alginate hydrogels. Furthermore, biochemical and biological studies showed that these 3D scaffolds are able to maintain chondrocyte phenotype and particularly to significantly stimulate and promote chondrocyte growth and proliferation. In conclusion, the present study can be considered as a first step towards an engineered, biologically active scaffold for chondrocyte in vitro cultivation, expansion, and cell delivery.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Quitosana/química , Condrócitos/efeitos dos fármacos , Hidrogéis/química , Lactose/química , Animais , Biomarcadores/metabolismo , Cálcio/química , Cartilagem Articular/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Colágeno/genética , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/genética , Cinética , Laminaria/química , Espectroscopia de Ressonância Magnética , Microscopia Confocal , RNA/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA