Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 80(3): 495-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38036009

RESUMO

BACKGROUND & AIMS: The Banff Liver Working Group recently published consensus recommendations for steatosis assessment in donor liver biopsy, but few studies reported their use and no automated deep-learning algorithms based on the proposed criteria have been developed so far. We evaluated Banff recommendations on a large monocentric series of donor liver needle biopsies by comparing pathologists' scores with those generated by convolutional neural networks (CNNs) we specifically developed for automated steatosis assessment. METHODS: We retrospectively retrieved 292 allograft liver needle biopsies collected between January 2016 and January 2020 and performed steatosis assessment using a former intra-institution method (pre-Banff method) and the newly introduced Banff recommendations. Scores provided by pathologists and CNN models were then compared, and the degree of agreement was measured with the intraclass correlation coefficient (ICC). RESULTS: Regarding the pre-Banff method, poor agreement was observed between the pathologist and CNN models for small droplet macrovesicular steatosis (ICC: 0.38), large droplet macrovesicular steatosis (ICC: 0.08), and the final combined score (ICC: 0.16) evaluation, but none of these reached statistically significance. Interestingly, significantly improved agreement was observed using the Banff approach: ICC was 0.93 for the low-power score (p <0.001), 0.89 for the high-power score (p <0.001), and 0.93 for the final score (p <0.001). Comparing the pre-Banff method with the Banff approach on the same biopsy, pathologist and CNN model assessment showed a mean (±SD) percentage of discrepancy of 26.89 (±22.16) and 1.20 (±5.58), respectively. CONCLUSIONS: Our findings support the use of Banff recommendations in daily practice and highlight the need for a granular analysis of their effect on liver transplantation outcomes. IMPACT AND IMPLICATIONS: We developed and validated the first automated deep-learning algorithms for standardized steatosis assessment based on the Banff Liver Working Group consensus recommendations. Our algorithm provides an unbiased automated evaluation of steatosis, which will lay the groundwork for granular analysis of steatosis's short- and long-term effects on organ viability, enabling the identification of clinically relevant steatosis cut-offs for donor organ acceptance. Implementing our algorithm in daily clinical practice will allow for a more efficient and safe allocation of donor organs, improving the post-transplant outcomes of patients.


Assuntos
Aprendizado Profundo , Fígado Gorduroso , Transplante de Fígado , Humanos , Consenso , Estudos Retrospectivos , Doadores Vivos , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/patologia , Biópsia , Algoritmos
2.
Circ Res ; 131(3): 239-257, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35770662

RESUMO

BACKGROUND: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interferes with the interactions of the YAP/TAZ (transcriptional coactivator with PDZ-binding motif) complex with their cognate transcription factors TEADs (TEA domain transcription factors), under high-strain and profibrotic stimulation. METHODS: We employed high content imaging, 2-dimensional/3-dimensional culture, atomic force microscopy mapping, and molecular methods to prove the role of cell/nuclear straining in YAP-dependent fibrotic programming in a mouse model of ischemia-dependent cardiac fibrosis and in human-derived primitive cardiac stromal cells. We also tested treatment of cells with Verteporfin, a drug known to prevent the association of the YAP/TAZ complex with their cognate transcription factors TEADs. RESULTS: Our experiments suggested that pharmacologically targeting the YAP-dependent pathway overrides the profibrotic activation of cardiac stromal cells by mechanical cues in vitro, and that this occurs even in the presence of profibrotic signaling mediated by TGF-ß1 (transforming growth factor beta-1). In vivo administration of Verteporfin in mice with permanent cardiac ischemia reduced significantly fibrosis and morphometric remodeling but did not improve cardiac performance. CONCLUSIONS: Our study indicates that preventing molecular translation of mechanical cues in cardiac stromal cells reduces the impact of cardiac maladaptive remodeling with a positive effect on fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fosfoproteínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fibrose , Humanos , Camundongos , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Verteporfina , Proteínas de Sinalização YAP
3.
J Ultrasound Med ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032010

RESUMO

Artificial intelligence (AI) models can play a more effective role in managing patients with the explosion of digital health records available in the healthcare industry. Machine-learning (ML) and deep-learning (DL) techniques are two methods used to develop predictive models that serve to improve the clinical processes in the healthcare industry. These models are also implemented in medical imaging machines to empower them with an intelligent decision system to aid physicians in their decisions and increase the efficiency of their routine clinical practices. The physicians who are going to work with these machines need to have an insight into what happens in the background of the implemented models and how they work. More importantly, they need to be able to interpret their predictions, assess their performance, and compare them to find the one with the best performance and fewer errors. This review aims to provide an accessible overview of key evaluation metrics for physicians without AI expertise. In this review, we developed four real-world diagnostic AI models (two ML and two DL models) for breast cancer diagnosis using ultrasound images. Then, 23 of the most commonly used evaluation metrics were reviewed uncomplicatedly for physicians. Finally, all metrics were calculated and used practically to interpret and evaluate the outputs of the models. Accessible explanations and practical applications empower physicians to effectively interpret, evaluate, and optimize AI models to ensure safety and efficacy when integrated into clinical practice.

4.
Skin Res Technol ; 29(11): e13508, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009044

RESUMO

BACKGROUND: The quality of dermoscopic images is affected by lighting conditions, operator experience, and device calibration. Color constancy algorithms reduce this variability by making images appear as if they were acquired under the same conditions, allowing artificial intelligence (AI)-based methods to achieve better results. The impact of color constancy algorithms has not yet been evaluated from a clinical dermatologist's workflow point of view. Here we propose an in-depth investigation of the impact of an AI-based color constancy algorithm, called DermoCC-GAN, on the skin lesion diagnostic routine. METHODS: Three dermatologists, with different experience levels, carried out two assignments. The clinical experts evaluated key parameters such as perceived image quality, lesion diagnosis, and diagnosis confidence. RESULTS: When the DermoCC-GAN color constancy algorithm was applied, the dermoscopic images were perceived to be of better quality overall. An increase in classification performance was observed, reaching a maximum accuracy of 74.67% for a six-class classification task. Finally, the use of normalized images results in an increase in the level of self-confidence in the qualitative diagnostic routine. CONCLUSIONS: From the conducted analysis, it is evident that the impact of AI-based color constancy algorithms, such as DermoCC-GAN, is positive and brings qualitative benefits to the clinical practitioner.


Assuntos
Melanoma , Dermatopatias , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Melanoma/patologia , Inteligência Artificial , Dermoscopia/métodos , Algoritmos , Dermatopatias/diagnóstico por imagem
6.
Biomed Eng Online ; 17(1): 89, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925379

RESUMO

BACKGROUND: Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. RESULTS: The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. CONCLUSION: To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.


Assuntos
Núcleo Celular/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Hematoxilina/metabolismo , Processamento de Imagem Assistida por Computador , Algoritmos , Humanos , Coloração e Rotulagem
7.
Phys Med Biol ; 69(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38171012

RESUMO

Objective. Prior to radiation therapy planning, accurate delineation of gross tumour volume (GTVs) and organs at risk (OARs) is crucial. In the current clinical practice, tumour delineation is performed manually by radiation oncologists, which is time-consuming and prone to large inter-observer variability. With the advent of deep learning (DL) models, automated contouring has become possible, speeding up procedures and assisting clinicians. However, these tools are currently used in the clinic mostly for contouring OARs, since these systems are not reliable yet for contouring GTVs. To improve the reliability of these systems, researchers have started exploring the topic of probabilistic neural networks. However, there is still limited knowledge of the practical implementation of such networks in real clinical settings.Approach. In this work, we developed a 3D probabilistic system that generates DL-based uncertainty maps for lung cancer CT segmentations. We employed the Monte Carlo (MC) dropout technique to generate probabilistic and uncertainty maps, while the model calibration was evaluated by using reliability diagrams. A clinical validation was conducted in collaboration with a radiation oncologist to qualitatively assess the value of the uncertainty estimates. We also proposed two novel metrics, namely mean uncertainty (MU) and relative uncertainty volume (RUV), as potential indicators for clinicians to assess the need for independent visual checks of the DL-based segmentation. Main results. Our study showed that uncertainty mapping effectively identified cases of under or over-contouring. Although the overconfidence of the model, a strong correlation was observed between the clinical opinion and MU metric. Moreover, both MU and RUV revealed high AUC values in discretising between low and high uncertainty cases.Significance. Our study is one of the first attempts to clinically validate uncertainty estimates in DL-based contouring. The two proposed metrics exhibited promising potential as indicators for clinicians to independently assess the quality of tumour delineation.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Reprodutibilidade dos Testes , Incerteza , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Processamento de Imagem Assistida por Computador/métodos
8.
Comput Methods Programs Biomed ; 250: 108200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677080

RESUMO

BACKGROUND AND OBJECTIVES: Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. METHODS: A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013 and 2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. RESULTS: Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42 %), resampling (increasing the percentage of robust radiomics features from 59.5 % to 89.25 %), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42 % in classification accuracy and 47 % in segmentation Dice scores. CONCLUSIONS: Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.


Assuntos
Inteligência Artificial , Diagnóstico por Imagem , Humanos , Diagnóstico por Imagem/normas , Processamento de Imagem Assistida por Computador/métodos , Estudos Multicêntricos como Assunto
9.
Comput Biol Med ; 172: 108207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489986

RESUMO

Artificial Intelligence (AI) techniques are increasingly used in computer-aided diagnostic tools in medicine. These techniques can also help to identify Hypertension (HTN) in its early stage, as it is a global health issue. Automated HTN detection uses socio-demographic, clinical data, and physiological signals. Additionally, signs of secondary HTN can also be identified using various imaging modalities. This systematic review examines related work on automated HTN detection. We identify datasets, techniques, and classifiers used to develop AI models from clinical data, physiological signals, and fused data (a combination of both). Image-based models for assessing secondary HTN are also reviewed. The majority of the studies have primarily utilized single-modality approaches, such as biological signals (e.g., electrocardiography, photoplethysmography), and medical imaging (e.g., magnetic resonance angiography, ultrasound). Surprisingly, only a small portion of the studies (22 out of 122) utilized a multi-modal fusion approach combining data from different sources. Even fewer investigated integrating clinical data, physiological signals, and medical imaging to understand the intricate relationships between these factors. Future research directions are discussed that could build better healthcare systems for early HTN detection through more integrated modeling of multi-modal data sources.


Assuntos
Hipertensão , Medicina , Humanos , Inteligência Artificial , Eletrocardiografia , Hipertensão/diagnóstico por imagem , Angiografia por Ressonância Magnética
10.
Diagnostics (Basel) ; 14(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928633

RESUMO

Recent years have ushered in a transformative era in in vitro modeling with the advent of organoids, three-dimensional structures derived from stem cells or patient tumor cells. Still, fully harnessing the potential of organoids requires advanced imaging technologies and analytical tools to quantitatively monitor organoid growth. Optical coherence tomography (OCT) is a promising imaging modality for organoid analysis due to its high-resolution, label-free, non-destructive, and real-time 3D imaging capabilities, but accurately identifying and quantifying organoids in OCT images remain challenging due to various factors. Here, we propose an automatic deep learning-based pipeline with convolutional neural networks that synergistically includes optimized preprocessing steps, the implementation of a state-of-the-art deep learning model, and ad-hoc postprocessing methods, showcasing good generalizability and tracking capabilities over an extended period of 13 days. The proposed tracking algorithm thoroughly documents organoid evolution, utilizing reference volumes, a dual branch analysis, key attribute evaluation, and probability scoring for match identification. The proposed comprehensive approach enables the accurate tracking of organoid growth and morphological changes over time, advancing organoid analysis and serving as a solid foundation for future studies for drug screening and tumor drug sensitivity detection based on organoids.

11.
Sci Rep ; 13(1): 17759, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853094

RESUMO

Prion disease is a fatal neurodegenerative disorder characterized by accumulation of an abnormal prion protein (PrPSc) in the central nervous system. To identify PrPSc aggregates for diagnostic purposes, pathologists use immunohistochemical staining of prion protein antibodies on tissue samples. With digital pathology, artificial intelligence can now analyze stained slides. In this study, we developed an automated pipeline for the identification of PrPSc aggregates in tissue samples from the cerebellar and occipital cortex. To the best of our knowledge, this is the first framework to evaluate PrPSc deposition in digital images. We used two strategies: a deep learning segmentation approach using a vision transformer, and a machine learning classification approach with traditional classifiers. Our method was developed and tested on 64 whole slide images from 41 patients definitively diagnosed with prion disease. The results of our study demonstrated that our proposed framework can accurately classify WSIs from a blind test set. Moreover, it can quantify PrPSc distribution and localization throughout the brain. This could potentially be extended to evaluate protein expression in other neurodegenerative diseases like Alzheimer's and Parkinson's. Overall, our pipeline highlights the potential of AI-assisted pathology to provide valuable insights, leading to improved diagnostic accuracy and efficiency.


Assuntos
Doenças Priônicas , Proteínas Priônicas , Humanos , Proteínas Priônicas/metabolismo , Inteligência Artificial , Doenças Priônicas/diagnóstico , Doenças Priônicas/patologia , Encéfalo/metabolismo , Aprendizado de Máquina
12.
Comput Med Imaging Graph ; 109: 102288, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633031

RESUMO

BACKGROUND: Prostate cancer (PCa) is the most frequently diagnosed cancer in men worldwide, affecting around 1.4 million individuals. Current PCa diagnosis relies on histological analysis of prostate biopsy samples, an activity that is both time-consuming and prone to observer bias. Previous studies have demonstrated that immunostaining of cytokeratin, p63, and racemase can significantly improve the sensitivity and the specificity of PCa detection compared to traditional H&E staining. METHODS: This study introduces a novel approach that combines diagnosis-specific immunohistochemical (IHC) staining and deep learning techniques to provide reliable stratification of prostate glands. Our approach leverages a customized segmentation network, called K-PPM, that incorporates adaptive kernels and multiscale feature integration to enhance the functional information of IHC. To address the high class-imbalance problem in the dataset, we propose a weighted adaptive patch-extraction and specific-class kernel update. RESULTS: Our system achieved noteworthy results, with a mean Dice Score Coefficient of 90.36% and a mean absolute error of 1.64 % in specific-class gland quantification on whole slides. These findings demonstrate the potential of our system as a valuable support tool for pathologists, reducing workload and decreasing diagnostic inter-observer variability. CONCLUSIONS: Our study presents innovative approaches that have broad applicability to other digital pathology areas beyond PCa diagnosis. As a fully automated system, this model can serve as a framework for improving the histological and IHC diagnosis of other types of cancer.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Queratinas , Racemases e Epimerases , Neoplasias da Próstata/patologia , Próstata/patologia
13.
Comput Biol Med ; 165: 107441, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37683529

RESUMO

Uncertainty estimation in healthcare involves quantifying and understanding the inherent uncertainty or variability associated with medical predictions, diagnoses, and treatment outcomes. In this era of Artificial Intelligence (AI) models, uncertainty estimation becomes vital to ensure safe decision-making in the medical field. Therefore, this review focuses on the application of uncertainty techniques to machine and deep learning models in healthcare. A systematic literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our analysis revealed that Bayesian methods were the predominant technique for uncertainty quantification in machine learning models, with Fuzzy systems being the second most used approach. Regarding deep learning models, Bayesian methods emerged as the most prevalent approach, finding application in nearly all aspects of medical imaging. Most of the studies reported in this paper focused on medical images, highlighting the prevalent application of uncertainty quantification techniques using deep learning models compared to machine learning models. Interestingly, we observed a scarcity of studies applying uncertainty quantification to physiological signals. Thus, future research on uncertainty quantification should prioritize investigating the application of these techniques to physiological signals. Overall, our review highlights the significance of integrating uncertainty techniques in healthcare applications of machine learning and deep learning models. This can provide valuable insights and practical solutions to manage uncertainty in real-world medical data, ultimately improving the accuracy and reliability of medical diagnoses and treatment recommendations.


Assuntos
Inteligência Artificial , Atenção à Saúde , Teorema de Bayes , Reprodutibilidade dos Testes , Incerteza
14.
Cancers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36900293

RESUMO

In clinical routine, the quality of whole-slide images plays a key role in the pathologist's diagnosis, and suboptimal staining may be a limiting factor. The stain normalization process helps to solve this problem through the standardization of color appearance of a source image with respect to a target image with optimal chromatic features. The analysis is focused on the evaluation of the following parameters assessed by two experts on original and normalized slides: (i) perceived color quality, (ii) diagnosis for the patient, (iii) diagnostic confidence and (iv) time required for diagnosis. Results show a statistically significant increase in color quality in the normalized images for both experts (p < 0.0001). Regarding prostate cancer assessment, the average times for diagnosis are significantly lower for normalized images than original ones (first expert: 69.9 s vs. 77.9 s with p < 0.0001; second expert: 37.4 s vs. 52.7 s with p < 0.0001), and at the same time, a statistically significant increase in diagnostic confidence is proven. The improvement of poor-quality images and greater clarity of diagnostically important details in normalized slides demonstrate the potential of stain normalization in the routine practice of prostate cancer assessment.

15.
Comput Methods Programs Biomed ; 225: 107040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932723

RESUMO

BACKGROUND AND OBJECTIVE: Dermatological images are typically diagnosed based on visual analysis of the skin lesion acquired using a dermoscope. However, the final quality of the acquired image is highly dependent on the illumination conditions during the acquisition phase. This variability in the light source can affect the dermatologist's diagnosis and decrease the accuracy of computer-aided diagnosis systems. Color constancy algorithms have proven to be a powerful tool to address this issue by allowing the standardization of the image illumination source, but the most commonly used algorithms still present some inherent limitations due to assumptions made on the original image. In this work, we propose a novel Dermatological Color Constancy Generative Adversarial Network (DermoCC-GAN) algorithm to overcome the current limitations by formulating the color constancy task as an image-to-image translation problem. METHODS: A generative adversarial network was trained with a custom heuristic algorithm that performs well on the training set. The model hence learns the domain transfer task (from original to color standardized image) and is then able to accurately apply the color constancy on test images characterized by different illumination conditions. RESULTS: The proposed algorithm outperforms state-of-the-art color constancy algorithms for dermatological images in terms of normalized median intensity and when using the color-normalized images in a deep learning framework for lesion classification (accuracy of the seven-class classifier: 79.2%) and segmentation (dice score: 90.9%). In addition, we validated the proposed approach on two different external datasets with highly satisfactory results. CONCLUSIONS: The novel strategy presented here shows how it is possible to generalize a heuristic method for color constancy for dermatological image analysis by training a GAN. The overall approach presented here can be easily extended to numerous other applications.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos
16.
Diagnostics (Basel) ; 12(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35741181

RESUMO

Background: Due to the COVID-19 pandemic, teledermoscopy has been increasingly used in the remote diagnosis of skin cancers. In a study conducted in 2020, we demonstrated a potential role of an inexpensive device (NurugoTM Derma) as a first triage to select the skin lesions that require a face-to-face consultation with dermatologists. Herein, we report the results of a novel study that aimed to better investigate the performance of NurugoTM. Objectives: (i) verify whether the NurugoTM can be a communication tool between the general practitioner (GP) and dermatologist in the first assessment of skin lesions, (ii) analyze the degree of diagnostic-therapeutic agreement between dermatologists, (iii) estimate the number of potentially serious diagnostic errors. Methods: One hundred and forty-four images of skin lesions were collected at the Dermatology Outpatient Clinic in Novara using a conventional dermatoscope (instrument F), the NurugoTM (instrument N), and the latter with the interposition of a laboratory slide (instrument V). The images were evaluated in-blind by four dermatologists, and each was asked to make a diagnosis and to specify a possible treatment. Results: Our data show that F gave higher agreement values for all dermatologists, concerning the real clinical diagnosis. Nevertheless, a medium/moderate agreement value was obtained also for N and V instruments and that can be considered encouraging and indicate that all examined tools can potentially be used for the first screening of skin lesions. The total amount of misclassified lesions was limited (especially with the V tool), with up to nine malignant lesions wrongly classified as benign. Conclusions: NurugoTM, with adequate training, can be used to build a specific support network between GP and dermatologist or between dermatologists. Furthermore, its use could be extended to the diagnosis and follow-up of other skin diseases, especially for frail patients in emergencies, such as the current pandemic context.

17.
J Imaging ; 8(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35621897

RESUMO

Magnetic resonance imaging (MRI) has a growing role in the clinical workup of prostate cancer. However, manual three-dimensional (3D) segmentation of the prostate is a laborious and time-consuming task. In this scenario, the use of automated algorithms for prostate segmentation allows us to bypass the huge workload of physicians. In this work, we propose a fully automated hybrid approach for prostate gland segmentation in MR images using an initial segmentation of prostate volumes using a custom-made 3D deep network (VNet-T2), followed by refinement using an Active Shape Model (ASM). While the deep network focuses on three-dimensional spatial coherence of the shape, the ASM relies on local image information and this joint effort allows for improved segmentation of the organ contours. Our method is developed and tested on a dataset composed of T2-weighted (T2w) MRI prostatic volumes of 60 male patients. In the test set, the proposed method shows excellent segmentation performance, achieving a mean dice score and Hausdorff distance of 0.851 and 7.55 mm, respectively. In the future, this algorithm could serve as an enabling technology for the development of computer-aided systems for prostate cancer characterization in MR imaging.

18.
J Pathol Inform ; 13: 100145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268060

RESUMO

In digital pathology, the final appearance of digitized images is affected by several factors, resulting in stain color and intensity variation. Stain normalization is an innovative solution to overcome stain variability. However, the validation of color normalization tools has been assessed only from a quantitative perspective, through the computation of similarity metrics between the original and normalized images. To the best of our knowledge, no works investigate the impact of normalization on the pathologist's evaluation. The objective of this paper is to propose a multi-tissue (i.e., breast, colon, liver, lung, and prostate) and multi-center qualitative analysis of a stain normalization tool with the involvement of pathologists with different years of experience. Two qualitative studies were carried out for this purpose: (i) a first study focused on the analysis of the perceived image quality and absence of significant image artifacts after the normalization process; (ii) a second study focused on the clinical score of the normalized image with respect to the original one. The results of the first study prove the high quality of the normalized image with a low impact artifact generation, while the second study demonstrates the superiority of the normalized image with respect to the original one in clinical practice. The normalization process can help both to reduce variability due to tissue staining procedures and facilitate the pathologist in the histological examination. The experimental results obtained in this work are encouraging and can justify the use of a stain normalization tool in clinical routine.

19.
Comput Biol Med ; 128: 104129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254082

RESUMO

Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field.


Assuntos
Aprendizado Profundo , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Redes Neurais de Computação
20.
Comput Med Imaging Graph ; 90: 101930, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33964790

RESUMO

In kidney transplantations, pathologists evaluate the architecture of both glomeruli, interstitium and tubules to assess the nephron status. An accurate assessment of glomerulosclerosis and tubular atrophy is crucial for determining kidney acceptance, which is currently based on the pathologists' histological evaluations on renal biopsies in addition to clinical data. In this work, we present an automated algorithm, called RENTAG (Robust EvaluatioN of Tubular Atrophy & Glomerulosclerosis), for the segmentation and classification of glomerular and tubular structures in histopathological images. The proposed novel strategy combines the accuracy of a level-set with the semantic segmentation of convolutional neural networks to detect the glomeruli and tubules contours. In the TEST set, our method exhibited excellent performance in both glomeruli (dice score: 0.9529) and tubule (dice score: 0.9174) detection and outperformed all the compared methods. To the best of our knowledge, the RENTAG algorithm is the first fully automated method capable of quantifying glomerulosclerosis and tubular atrophy in digital histological images. The developed software can be employed for the analysis of pre-transplantation biopsies to support the pathologists' diagnostic activity.


Assuntos
Aprendizado Profundo , Algoritmos , Atrofia/patologia , Humanos , Processamento de Imagem Assistida por Computador , Rim , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA