Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Glia ; 66(10): 2174-2187, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30194875

RESUMO

Astrogliosis is a hallmark of neuroinflammatory disorders such as multiple sclerosis (MS). A detailed understanding of the underlying molecular mechanisms governing astrogliosis might facilitate the development of therapeutic targets. We investigated whether Nav1.5 expression in astrocytes plays a role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We created a conditional knockout of Nav1.5 in astrocytes and determined whether this affects the clinical course of EAE, focal macrophage and T cell infiltration, and diffuse activation of astrocytes. We show that deletion of Nav1.5 from astrocytes leads to significantly worsened clinical outcomes in EAE, with increased inflammatory infiltrate in both early and late stages of disease, unexpectedly, in a sex-specific manner. Removal of Nav1.5 in astrocytes leads to increased inflammation in female mice with EAE, including increased astroglial response and infiltration of T cells and phagocytic monocytes. These cellular changes are consistent with more severe EAE clinical scores. Additionally, we found evidence suggesting possible dysregulation of the immune response-particularly with regard to infiltrating macrophages and activated microglia-in female Nav1.5 KO mice compared with WT littermate controls. Together, our results show that deletion of Nav1.5 from astrocytes leads to significantly worsened clinical outcomes in EAE, with increased inflammatory infiltrate in both early and late stages of disease, in a sex-specific manner.


Assuntos
Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Caracteres Sexuais , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Esclerose Múltipla/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia
2.
Mol Med ; 21: 544-52, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26101954

RESUMO

Diabetic neuropathic pain affects a substantial number of people and represents a major public health problem. Available clinical treatments for diabetic neuropathic pain remain only partially effective and many of these treatments carry the burden of side effects or the risk of dependence. The misexpression of sodium channels within nociceptive neurons contributes to abnormal electrical activity associated with neuropathic pain. Voltage-gated sodium channel Nav1.3 produces tetrodotoxin-sensitive sodium currents with rapid repriming kinetics and has been shown to contribute to neuronal hyperexcitability and ectopic firing in injured neurons. Suppression of Nav1.3 activity can attenuate neuropathic pain induced by peripheral nerve injury. Previous studies have shown that expression of Nav1.3 is upregulated in dorsal root ganglion (DRG) neurons of diabetic rats that exhibit neuropathic pain. Here, we hypothesized that viral-mediated knockdown of Nav1.3 in painful diabetic neuropathy would reduce neuropathic pain. We used a validated recombinant adeno-associated virus (AAV)-shRNA-Nav1.3 vector to knockdown expression of Nav1.3, via a clinically applicable intrathecal injection method. Three weeks following vector administration, we observed a significant rate of transduction in DRGs of diabetic rats that concomitantly reduced neuronal excitability of dorsal horn neurons and reduced behavioral evidence of tactile allodynia. Taken together, these findings offer a novel gene therapy approach for addressing chronic diabetic neuropathic pain.


Assuntos
Diabetes Mellitus Experimental/terapia , Hiperalgesia/terapia , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Traumatismos dos Nervos Periféricos/terapia , Animais , Dependovirus/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Humanos , Hiperalgesia/genética , Canal de Sódio Disparado por Voltagem NAV1.3/biossíntese , Neuralgia/genética , Neuralgia/patologia , Neuralgia/terapia , Neurônios/metabolismo , Neurônios/patologia , Traumatismos dos Nervos Periféricos/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos
3.
Glia ; 62(7): 1162-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24740847

RESUMO

Astrogliosis is a prominent feature of many, if not all, pathologies of the brain and spinal cord, yet a detailed understanding of the underlying molecular pathways involved in the transformation from quiescent to reactive astrocyte remains elusive. We investigated the contribution of voltage-gated sodium channels to astrogliosis in an in vitro model of mechanical injury to astrocytes. Previous studies have shown that a scratch injury to astrocytes invokes dual mechanisms of migration and proliferation in these cells. Our results demonstrate that wound closure after mechanical injury, involving both migration and proliferation, is attenuated by pharmacological treatment with tetrodotoxin (TTX) and KB-R7943, at a dose that blocks reverse mode of the Na(+) /Ca(2+) exchanger (NCX), and by knockdown of Nav 1.5 mRNA. We also show that astrocytes display a robust [Ca(2+) ]i transient after mechanical injury and demonstrate that this [Ca(2+) ]i response is also attenuated by TTX, KB-R7943, and Nav 1.5 mRNA knockdown. Our results suggest that Nav 1.5 and NCX are potential targets for modulation of astrogliosis after injury via their effect on [Ca(2+) ]i .


Assuntos
Astrócitos/fisiologia , Gliose/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ferimentos e Lesões/fisiopatologia , Animais , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Córtex Cerebral , Técnicas de Silenciamento de Genes , Gliose/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Estimulação Física , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tetrodotoxina/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Ferimentos e Lesões/tratamento farmacológico
4.
Mol Ther ; 21(1): 49-56, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22910296

RESUMO

Neuropathic pain is a chronic condition that is often refractory to treatment with available therapies and thus an unmet medical need. We have previously shown that the voltage-gated sodium channel Na(v)1.3 is upregulated in peripheral and central nervous system (CNS) of rats following nerve injury, and that it contributes to nociceptive neuron hyperexcitability in neuropathic conditions. To evaluate the therapeutic potential of peripheral Na(v)1.3 knockdown at a specific segmental level, we constructed adeno-associated viral (AAV) vector expressing small hairpin RNA against rat Na(v)1.3 and injected it into lumbar dorsal root ganglion (DRG) of rats with spared nerve injury (SNI). Our data show that direct DRG injection provides a model that can be used for proof-of-principle studies in chronic pain with respect to peripheral delivery route of gene transfer constructs, high transduction efficiency, flexibility in terms of segmental localization, and limited behavioral effects of the surgical procedure. We show that knockdown of Na(v)1.3 in lumbar 4 (L4) DRG results in an attenuation of nerve injury-induced mechanical allodynia in the SNI model. Taken together, our studies support the contribution of peripheral Na(v)1.3 to pain in adult rats with neuropathic pain, validate Na(v)1.3 as a target, and provide validation for this approach of AAV-mediated peripheral gene therapy.


Assuntos
Dependovirus/genética , Gânglios Espinais/metabolismo , Técnicas de Silenciamento de Genes , Vetores Genéticos , Canal de Sódio Disparado por Voltagem NAV1.3/fisiologia , Doenças do Sistema Nervoso Periférico/prevenção & controle , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Regulação para Baixo , Masculino , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Neurosci ; 32(20): 6795-807, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22593049

RESUMO

Diabetic neuropathic pain imposes a huge burden on individuals and society, and represents a major public health problem. Despite aggressive efforts, diabetic neuropathic pain is generally refractory to available clinical treatments. A structure-function link between maladaptive dendritic spine plasticity and pain has been demonstrated previously in CNS and PNS injury models of neuropathic pain. Here, we reasoned that if dendritic spine remodeling contributes to diabetic neuropathic pain, then (1) the presence of malformed spines should coincide with the development of pain, and (2) disrupting maladaptive spine structure should reduce chronic pain. To determine whether dendritic spine remodeling contributes to neuropathic pain in streptozotocin (STZ)-induced diabetic rats, we analyzed dendritic spine morphology and electrophysiological and behavioral signs of neuropathic pain. Our results show changes in dendritic spine shape, distribution, and shape on wide-dynamic-range (WDR) neurons within lamina IV-V of the dorsal horn in diabetes. These diabetes-induced changes were accompanied by WDR neuron hyperexcitability and decreased pain thresholds at 4 weeks. Treatment with NSC23766 (N(6)-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride), a Rac1-specific inhibitor known to interfere with spine plasticity, decreased the presence of malformed spines in diabetes, attenuated neuronal hyperresponsiveness to peripheral stimuli, reduced spontaneous firing activity from WDR neurons, and improved nociceptive mechanical pain thresholds. At 1 week after STZ injection, animals with hyperglycemia with no evidence of pain had few or no changes in spine morphology. These results demonstrate that diabetes-induced maladaptive dendritic spine remodeling has a mechanistic role in neuropathic pain. Molecular pathways that control spine morphogenesis and plasticity may be promising future targets for treatment.


Assuntos
Aminoquinolinas/uso terapêutico , Espinhas Dendríticas/patologia , Neuropatias Diabéticas/patologia , Plasticidade Neuronal/fisiologia , Limiar da Dor/fisiologia , Pirimidinas/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/fisiopatologia , Injeções Espinhais , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/patologia , Células do Corno Posterior/fisiopatologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
6.
J Neurosci ; 31(50): 18391-400, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22171041

RESUMO

Repulsive guidance molecule b (RGMb) is a bone morphogenetic protein (BMP) coreceptor and sensitizer of BMP signaling, highly expressed in adult dorsal root ganglion (DRG) sensory neurons. We used a murine RGMb knock-out to gain insight into the physiological role of RGMb in the DRG, and address whether RGMb-mediated modulation of BMP signaling influences sensory axon regeneration. No evidence for altered development of the PNS and CNS was detected in RGMb(-/-) mice. However, both cultured neonatal whole DRG explants and dissociated DRG neurons from RGMb(-/-) mice exhibited significantly fewer and shorter neurites than those from wild-type littermates, a phenomenon that could be fully rescued by BMP-2. Moreover, Noggin, an endogenous BMP signaling antagonist, inhibited neurite outgrowth in wild-type DRG explants from naive as well as nerve injury-preconditioned mice. Noggin is downregulated in the DRG after nerve injury, and its expression is highly correlated and inversely associated with the known regeneration-associated genes, which are induced in the DRG by peripheral axonal injury. We show that diminished BMP signaling in vivo, achieved either through RGMb deletion or BMP inhibition with Noggin, retarded early axonal regeneration after sciatic nerve crush injury. Our data suggest a positive modulatory contribution of RGMb and BMP signaling to neurite extension in vitro and early axonal regrowth after nerve injury in vivo and a negative effect of Noggin.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Transdução de Sinais/fisiologia , Animais , Moléculas de Adesão Celular Neuronais , Células Cultivadas , Proteínas Ligadas por GPI , Gânglios Espinais/metabolismo , Camundongos , Camundongos Knockout , Compressão Nervosa , Neurônios/metabolismo , Fosforilação/fisiologia , Nervo Isquiático/fisiologia
7.
Exp Neurol ; 248: 509-19, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23933578

RESUMO

Although nearly 11 million individuals yearly require medical treatment due to burn injuries and develop clinically intractable pain, burn injury-induced pain is poorly understood, with relatively few studies in preclinical models. To elucidate mechanisms of burn injury-induced chronic pain, we utilized a second-degree burn model, which produces a persistent neuropathic pain phenotype. Rats with burn injury exhibited reduced mechanical pain thresholds ipsilateral to the burn injury. Ipsilateral WDR neurons in the spinal cord dorsal horn exhibited hyperexcitability in response to a range of stimuli applied to their hindpaw receptive fields. Because dendritic spine morphology is strongly associated with synaptic function and transmission, we profiled dendritic spine shape, density, and distribution of WDR neurons. Dendritic spine dysgenesis was observed on ipsilateral WDR neurons in burn-injured animals exhibiting behavioral and electrophysiological evidence of neuropathic pain. Heat hyperalgesia testing produced variable results, as expected from previous studies of this model of second-degree burn injury in rats. Administration of Rac1-inhibitor, NSC23766, attenuated dendritic spine dysgenesis, decreased mechanical allodynia and electrophysiological signs of burn-induced neuropathic pain. These results support two related implications: that the presence of abnormal dendritic spines contributes to the maintenance of neuropathic pain, and that therapeutic targeting of Rac1 signaling merits further investigation as a novel strategy for pain management after burn injury.


Assuntos
Queimaduras/fisiopatologia , Espinhas Dendríticas/fisiologia , Hiperalgesia/fisiopatologia , Neuralgia/fisiopatologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Potenciais de Ação/fisiologia , Aminoquinolinas/farmacologia , Animais , Queimaduras/complicações , Queimaduras/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Neuralgia/etiologia , Neuralgia/metabolismo , Plasticidade Neuronal/fisiologia , Medição da Dor , Limiar da Dor/fisiologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Cell Rep ; 5(5): 1353-64, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24316076

RESUMO

Mammalian pain-related sensory neurons are derived from TrkA lineage neurons located in the dorsal root ganglion. These neurons project to peripheral targets throughout the body, which can be divided into superficial and deep tissues. Here, we find that the transcription factor Runx1 is required for the development of many epidermis-projecting TrkA lineage neurons. Accordingly, knockout of Runx1 leads to the selective loss of sensory innervation to the epidermis, whereas deep tissue innervation and two types of deep tissue pain are unaffected. Within these cutaneous neurons, Runx1 suppresses a large molecular program normally associated with sensory neurons that innervate deep tissues, such as muscle and visceral organs. Ectopic expression of Runx1 in these deep sensory neurons causes a loss of this molecular program and marked deficits in deep tissue pain. Thus, this study provides insight into a genetic program controlling the segregation of cutaneous versus deep tissue pain pathways.


Assuntos
Linhagem da Célula , Epiderme/inervação , Gânglios Espinais/citologia , Músculos/inervação , Dor Nociceptiva/genética , Células Receptoras Sensoriais/metabolismo , Animais , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Gânglios Espinais/fisiologia , Camundongos , Mutação , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Receptor trkA/genética , Receptor trkA/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Vísceras/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA