Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 72(15): 391-397, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053125

RESUMO

Since the Global Polio Eradication Initiative (GPEI) began in 1988, the number of wild poliovirus (WPV) cases has declined by >99.99%. Five of the six World Health Organization (WHO) regions have been certified free of indigenous WPV, and WPV serotypes 2 and 3 have been declared eradicated globally (1). WPV type 1 (WPV1) remains endemic only in Afghanistan and Pakistan (2,3). Before the outbreak described in this report, WPV1 had not been detected in southeastern Africa since the 1990s, and on August 25, 2020, the WHO African Region was certified free of indigenous WPV (4). On February 16, 2022, WPV1 infection was confirmed in one child living in Malawi, with onset of paralysis on November 19, 2021. Genomic sequence analysis of the isolated poliovirus indicated that it originated in Pakistan (5). Cases were subsequently identified in Mozambique. This report summarizes progress in the outbreak response since the initial report (5). During November 2021-December 2022, nine children and adolescents with paralytic polio caused by WPV1 were identified in southeastern Africa: one in Malawi and eight in Mozambique. Malawi, Mozambique, and three neighboring countries at high risk for WPV1 importation (Tanzania, Zambia, and Zimbabwe) responded by increasing surveillance and organizing up to six rounds of national and subnational polio supplementary immunization activities (SIAs).* Although no cases of paralytic WPV1 infection have been reported in Malawi since November 2021 or in Mozambique since August 2022, undetected transmission might be ongoing because of poliovirus surveillance gaps and testing delays. Efforts to further enhance poliovirus surveillance sensitivity, improve SIA quality, and strengthen routine immunization are needed to ensure that WPV1 transmission has been interrupted within 12 months of the first case, thereby preserving the WHO African Region's WPV-free status.


Assuntos
Poliomielite , Poliovirus , Criança , Adolescente , Humanos , Poliovirus/genética , Vigilância da População , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Surtos de Doenças , Malaui , Vacina Antipólio Oral , Programas de Imunização , Erradicação de Doenças
2.
J Pediatric Infect Dis Soc ; 11(2): 55-59, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34791366

RESUMO

BACKGROUND: World Health Organization African region is wild poliovirus-free; however, outbreaks of vaccine-derived poliovirus type 2 (VDPV2) continue to expand across the continent including in Chad. We conducted a serological survey of polio antibodies in polio high-risk areas of Chad to assess population immunity against poliovirus and estimate the risk of future outbreaks. METHODS: This was a community-based, cross-sectional survey carried out in September 2019. Children between 12 and 59 months were randomly selected using GIS enumeration of structures. Informed consent, demographic and anthropometric data, vaccination history, and blood spots were collected. Seropositivity against all 3 poliovirus serotypes was assessed using a microneutralization assay at Centers for Disease Control and Prevention, Atlanta, GA, USA. RESULTS: Analyzable data were obtained from 236 out of 285 (82.8%) enrolled children. Seroprevalence of polio antibodies for serotypes 1, 2, and 3 was 214/236 (90.7%); 145/236 (61.4%); and 196/236 (86.2%), respectively. For serotype 2, the seroprevalence significantly increased with age (P = .004); chronic malnutrition was a significant risk factor for being type 2-seronegative. INTERPRETATION: Poliovirus type 2 seroprevalence in young children was considered insufficient to protect against the spread of paralytic diseases caused by VDPV2. Indeed, VDPV2 outbreaks were reported from Chad in 2019 and 2020. High-quality immunization response to these outbreaks is needed to prevent further spread.


Assuntos
Poliovirus , Vacinas , Anticorpos Antivirais , Chade/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Humanos , Lactente , Prevalência , Estudos Soroepidemiológicos
3.
J Immunol Sci ; Spec Issue(2): 1115, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33997865

RESUMO

The geographic information system (GIS) mapping was used to improve the efficiency of vaccination teams. This paper documents the process in the deployment of geographical information system in response to polio eradication in Chad. It started with a careful review of government official documents as well as review of literature and online resources on Chad, which confirmed that official boundaries existed at two levels, namely Regions and Districts. All settlement locations in the target Districts were identified by manual feature extraction of high-resolution, recent satellite imagery, and map layers created for the following categories: hamlets, hamlet areas, small settlements, and built-up areas (BUAs). This clearly improved microplanning and provided valuable feedback in identifying missed settlements, leading to increased coverage and fewer missed children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA