Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256189

RESUMO

Shigellosis, an acute gastroenteritis infection caused by Shigella species, remains a public health burden in developing countries. Recently, many outbreaks due to Shigella sonnei multidrug-resistant strains have been reported in high-income countries, and the lack of an effective vaccine represents a major hurdle to counteract this bacterial pathogen. Vaccine candidates against Shigella sonnei are under clinical development, including a Generalized Modules for Membrane Antigens (GMMA)-based vaccine. The mechanisms by which GMMA-based vaccines interact and activate human immune cells remain elusive. Our previous study provided the first evidence that both adaptive and innate immune cells are targeted and functionally shaped by the GMMA-based vaccine. Here, flow cytometry and confocal microscopy analysis allowed us to identify monocytes as the main target population interacting with the S. sonnei 1790-GMMA vaccine on human peripheral blood. In addition, transcriptomic analysis of this cell population revealed a molecular signature induced by 1790-GMMA mostly correlated with the inflammatory response and cytokine-induced processes. This also impacts the expression of genes associated with macrophages' differentiation and T cell regulation, suggesting a dual function for this vaccine platform both as an antigen carrier and as a regulator of immune cell activation and differentiation.


Assuntos
Antígenos de Grupos Sanguíneos , Gastroenterite , Metilmetacrilatos , Vacinas , Humanos , Monócitos , Shigella sonnei/genética , Antígenos de Bactérias/genética
2.
J Immunol ; 195(4): 1617-27, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26170383

RESUMO

Induction of persistent protective immune responses is a key attribute of a successful vaccine formulation. MF59 adjuvant, an oil-in-water emulsion used in human vaccines, is known to induce persistent high-affinity functional Ab titers and memory B cells, but how it really shapes the Ag-specific B cell compartment is poorly documented. In this study, we characterized the Ab- and Ag-specific B cell compartment in wild-type mice immunized with HlaH35L, a Staphylococcus aureus Ag known to induce measurable functional Ab responses, formulated with MF59 or aluminum salts, focusing on germinal centers (GC) in secondary lymphoid organs. Taking advantage of single-cell flow cytometry analyses, HlaH35L-specific B cells were characterized for the expression of CD38 and GL-7, markers of memory and GC, respectively, and for CD80 and CD73 activation markers. We demonstrated that immunization with MF59-, but not aluminum salt-adjuvanted HlaH35L, induced expanded Ag-specific CD73(+)CD80(-) GC B cells in proximal- and distal-draining lymph nodes, and promoted the persistence of GC B cells, detected up to 4 mo after immunization. In addition to increasing GC B cells, MF59-adjuvanted HlaH35L also increased the frequency of T follicular helper cells. This work extends previous knowledge regarding adaptive immune responses to MF59-adjuvanted vaccines, and, to our knowledge, for the first time an adjuvant used in human licensed products is shown to promote strong and persistent Ag-specific GC responses that might benefit the rational design of new vaccination strategies.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Centro Germinativo/citologia , Centro Germinativo/imunologia , Polissorbatos , Esqualeno , Vacinação , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos/imunologia , Antígenos CD/metabolismo , Linfócitos B/metabolismo , Toxinas Bacterianas/imunologia , Quimiotaxia de Leucócito/imunologia , Feminino , Proteínas Hemolisinas/imunologia , Imunofenotipagem , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Fenótipo , Esqualeno/imunologia , Vacinas Antiestafilocócicas
3.
Infect Immun ; 83(8): 3157-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015481

RESUMO

Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug-resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murine Staphylococcus aureus infection model, in which bacteria were inoculated in an air pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation, four-component S. aureus vaccine (4C-Staph), prior to infection allowed us to measure bacteria, cytokines, and 4C-Staph-specific antibodies and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed the upregulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infection was also obtained in mice immunized with 4C-Staph and depleted of neutrophils; these mice showed an increase in monocytes and macrophages. Upregulation of the FcγR and the presence of antigen-specific antibodies induced by immunization with 4C-Staph may contribute to increase bacterial opsonophagocytosis. Protection in neutropenic mice indicated that an effective vaccine could activate alternative protection mechanisms compensating for neutropenia, a condition often occurring in S. aureus-infected patients.


Assuntos
Monócitos/imunologia , Neutropenia/imunologia , Neutrófilos/imunologia , Receptores de IgG/genética , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Neutropenia/genética , Neutropenia/microbiologia , Receptores de IgG/imunologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética , Staphylococcus aureus/genética
4.
Cytometry A ; 87(4): 357-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704858

RESUMO

The recent introduction of mass cytometry, a technique coupling a cell introduction system generating a stream of single cells with mass spectrometry, has greatly increased the number of parameters that can be measured per single cell. As with all new technology there is a need for dissemination of standardization and quality control procedures. Here, we characterize variations in sensitivity observed across the mass range of a mass cytometer, using different lanthanide tags. We observed a five-fold difference in lanthanide detection over the mass range and demonstrated that each instrument has its own sensitivity pattern. Therefore, the selection of lanthanide combinations is a key step in the establishment of a staining panel for mass cytometry-based experiments, particularly for multicenter studies. We propose the sensitivity pattern as the basis for panel design, instrument standardization and future implementation of normalization algorithms.


Assuntos
Citometria de Fluxo/métodos , Elementos da Série dos Lantanídeos/metabolismo , Espectrometria de Massas/métodos , Coloração e Rotulagem/métodos , Algoritmos , Animais , Anticorpos/imunologia , Células Cultivadas , Citometria de Fluxo/instrumentação , Corantes Fluorescentes , Isótopos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia
5.
Blood ; 117(21): 5683-91, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21487111

RESUMO

TLR7 and TLR8 are intracellular sensors activated by single-stranded RNA species generated during viral infections. Various synthetic small molecules can also activate TLR7 or TLR8 or both through an unknown mechanism. Notably, direct interaction between small molecules and TLR7 or TLR8 has never been shown. To shed light on how small molecule agonists target TLRs, we labeled 2 imidazoquinolines, resiquimod and imiquimod, and one adenine-based compound, SM360320, with 2 different fluorophores [5(6) carboxytetramethylrhodamine and Alexa Fluor 488] and monitored their intracellular localization in human plasmacytoid dendritic cells (pDCs). All fluorescent compounds induced the production of IFN-α, TNF-α, and IL-6 and the up-regulation of CD80 and CD86 by pDCs showing they retained TLR7-stimulating activity. Confocal imaging of pDCs showed that, similar to CpG-B, all compounds concentrated in the MHC class II loading compartment (MIIC), identified as lysosome-associated membrane protein 1(+), CD63, and HLA-DR(+) endosomes. Treatment of pDCs with bafilomycin A, an antagonist of the vacuolar-type proton ATPase controlling endosomal acidification, prevented the accumulation of small molecule TLR7 agonists, but not of CpG-B, in the MIIC. These results indicate that a pH-driven concentration of small molecule TLR7 agonists in the MIIC is required for pDC activation.


Assuntos
Adenina/análogos & derivados , Aminoquinolinas/farmacocinética , Células Dendríticas/metabolismo , Corantes Fluorescentes , Genes MHC da Classe II/fisiologia , Imidazóis/farmacocinética , Receptor 7 Toll-Like/agonistas , Adenina/farmacocinética , Antineoplásicos/farmacocinética , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Humanos , Imiquimode , Macrolídeos/farmacologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Quinolinas/química , Quinolinas/farmacocinética , Receptor 7 Toll-Like/metabolismo
6.
Vaccine ; 41(3): 724-734, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36564274

RESUMO

The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.


Assuntos
Hidróxido de Alumínio , Vacinas Meningocócicas , Adulto , Humanos , Interferons , Receptor 7 Toll-Like , Antivirais , Vacinas Conjugadas , Adjuvantes Imunológicos , Citocinas , Análise de Sistemas
7.
Proc Natl Acad Sci U S A ; 106(10): 3877-82, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19237568

RESUMO

Immune responses to vaccination are tested in clinical trials. This process usually requires years especially when immune memory and persistence are analyzed. Markers able to quickly predict the immune response would be very useful, particularly when dealing with emerging diseases that require a rapid response, such as avian influenza. To address this question we vaccinated healthy adults at days 1, 22, and 202 with plain or MF59-adjuvanted H5N1 subunit vaccines and tested both cell-mediated and antibody responses up to day 382. Only the MF59-H5N1 vaccine induced high titers of neutralizing antibodies, a large pool of memory H5N1-specific B lymphocytes, and H5-CD4(+) T cells broadly reactive with drifted H5. The CD4(+) response was dominated by IL-2(+) IFN-gamma(-) IL-13(-) T cells. Remarkably, a 3-fold increase in the frequency of virus-specific total CD4(+) T cells, measurable after 1 dose, accurately predicted the rise of neutralizing antibodies after booster immunization and their maintenance 6 months later. We suggest that CD4(+) T cell priming might be used as an early predictor of the immunogenicity of prepandemic vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adulto , Formação de Anticorpos/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta Imunológica , Humanos , Memória Imunológica/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Vacinas contra Influenza/farmacologia , Testes de Neutralização , Fenótipo , Polissorbatos/farmacologia , Esqualeno/farmacologia , Células Th1/citologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Fatores de Tempo , Vacinação
8.
Front Cell Infect Microbiol ; 12: 767153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186786

RESUMO

Generalized Modules for Membrane Antigens (GMMA) are outer membrane exosomes purified from Gram-negative bacteria genetically mutated to increase blebbing and reduce risk of reactogenicity. This is commonly achieved through modification of the lipid A portion of lipopolysaccharide. GMMA faithfully resemble the bacterial outer membrane surface, and therefore represent a powerful and flexible platform for vaccine development. Although GMMA-based vaccines have been demonstrated to induce a strong and functional antibody response in animals and humans maintaining an acceptable reactogenicity profile, the overall impact on immune cells and their mode of action are still poorly understood. To characterize the GMMA-induced immune response, we stimulated human peripheral blood mononuclear cells (hPBMCs) with GMMA from Shigella sonnei. We studied GMMA both with wild-type hexa-acylated lipid A and with the corresponding less reactogenic penta-acylated form. Using multicolor flow cytometry, we assessed the activation of immune cell subsets and we profiled intracellular cytokine production after GMMA stimulation. Moreover, we measured the secretion of thirty cytokines/chemokines in the cell culture supernatants. Our data indicated activation of monocytes, dendritic, NK, B, and γδ T cells. Comparison of the cytokine responses showed that, although the two GMMA have qualitatively similar profiles, GMMA with modified penta-acylated lipid A induced a lower production of pro-inflammatory cytokines/chemokines compared to GMMA with wild-type lipid A. Intracellular cytokine staining indicated monocytes and dendritic cells as the main source of the cytokines produced. Overall, these data provide new insights into the activation of key immune cells potentially targeted by GMMA-based vaccines.


Assuntos
Leucócitos Mononucleares , Shigella sonnei , Animais , Antígenos de Bactérias , Humanos , Imunidade , Metilmetacrilatos
9.
Blood ; 113(18): 4232-9, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19176317

RESUMO

Dendritic cell (DC) populations play unique and essential roles in the detection of pathogens, but information on how different DC types work together is limited. In this study, 2 major DC populations of human blood, myeloid (mDCs) and plasmacytoid (pDCs), were cultured alone or together in the presence of pathogens or their products. We show that pDCs do not respond to whole bacteria when cultured alone, but mature in the presence of mDCs. Using purified stimuli, we dissect this cross-talk and demonstrate that mDCs and pDCs activate each other in response to specific induction of only one of the cell types. When stimuli for one or both populations are limited, they synergize to reach optimal activation. The cross-talk is limited to enhanced antigen presentation by the nonresponsive population with no detectable changes in the quantity and range of cytokines produced. We propose that each population can be a follower or leader in immune responses against pathogen infections, depending on their ability to respond to infectious agents. In addition, our results indicate that pDCs play a secondary role to induce immunity against human bacterial infections, which has implications for more efficient targeting of DC populations with improved vaccines and therapeutics.


Assuntos
Bactérias/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Mieloides/imunologia , Células Mieloides/microbiologia , Técnicas de Cultura de Células , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Rim/metabolismo , Luciferases/metabolismo , Ativação Linfocitária/imunologia , Fagocitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/genética , Transfecção
10.
Anal Biochem ; 418(2): 224-30, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21820996

RESUMO

Flow cytometry (FC) has been widely used in biological research; however, its use for vaccine characterization has been very limited. Here we describe the development of an FC method for the direct quantification of two Neisseria meningitidis vaccine antigens, in mono- and multivalent formulations, while still adsorbed on aluminum hydroxide (AH) suspension. The antibody-based method is specific and sensitive. Because FC allows microscopic particle examination, the entire aluminum suspension carrying adsorbed antigen(s) can be analyzed directly. In addition to determining antigen concentration and identity, the assay is able to determine the distribution of the antigens on AH. High correlation coefficients (r(2)) were routinely achieved for a broad range of antigen doses from 0 to 150 µg/dose. Traditional assays for quantitative and qualitative antigen characterization on AH particles involve either complete aluminum dissolution or antigen desorption from the adjuvant. Because our direct method uses the whole AH suspension, the cumbersome steps used by traditional methods are not required. Those steps are often inefficient in desorbing the antigens and in some cases can lead to protein denaturation. We believe that this novel FC-based assay could circumvent some of the complex and tedious antigen-adjuvant desorption methods.


Assuntos
Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Antígenos Virais/análise , Citometria de Fluxo/métodos , Vacinas Meningocócicas/análise , Adsorção , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/patologia , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/metabolismo , Neisseria meningitidis/imunologia , Neisseria meningitidis/metabolismo
11.
Front Immunol ; 12: 757151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777370

RESUMO

CD8+ T cells play a key role in mediating protective immunity after immune challenges such as infection or vaccination. Several subsets of differentiated CD8+ T cells have been identified, however, a deeper understanding of the molecular mechanism that underlies T-cell differentiation is lacking. Conventional approaches to the study of immune responses are typically limited to the analysis of bulk groups of cells that mask the cells' heterogeneity (RNA-seq, microarray) and to the assessment of a relatively limited number of biomarkers that can be evaluated simultaneously at the population level (flow and mass cytometry). Single-cell analysis, on the other hand, represents a possible alternative that enables a deeper characterization of the underlying cellular heterogeneity. In this study, a murine model was used to characterize immunodominant hemagglutinin (HA533-541)-specific CD8+ T-cell responses to nucleic- and protein-based influenza vaccine candidates, using single-cell sorting followed by transcriptomic analysis. Investigation of single-cell gene expression profiles enabled the discovery of unique subsets of CD8+ T cells that co-expressed cytotoxic genes after vaccination. Moreover, this method enabled the characterization of antigen specific CD8+ T cells that were previously undetected. Single-cell transcriptome profiling has the potential to allow for qualitative discrimination of cells, which could lead to novel insights on biological pathways involved in cellular responses. This approach could be further validated and allow for more informed decision making in preclinical and clinical settings.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/farmacologia , Vacinas Baseadas em Ácido Nucleico/farmacologia , Análise de Célula Única , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Vacinas de Subunidades Antigênicas/farmacologia , Adjuvantes Imunológicos , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Vacinação
12.
EMBO Mol Med ; 13(6): e14035, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998144

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of death from lower respiratory tract infection in infants and children, and is responsible for considerable morbidity and mortality in older adults. Vaccines for pregnant women and elderly which are in phase III clinical studies target people with pre-existing natural immunity against RSV. To investigate the background immunity which will be impacted by vaccination, we single cell-sorted human memory B cells and dissected functional and genetic features of neutralizing antibodies (nAbs) induced by natural infection. Most nAbs recognized both the prefusion and postfusion conformations of the RSV F-protein (cross-binders) while a smaller fraction bound exclusively to the prefusion conformation. Cross-binder nAbs used a wide array of gene rearrangements, while preF-binder nAbs derived mostly from the expansion of B-cell clonotypes from the IGHV1 germline. This latter class of nAbs recognizes an epitope located between Site Ø, Site II, and Site V on the F-protein, identifying an important site of pathogen vulnerability.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Feminino , Humanos , Gravidez , Proteínas Virais de Fusão/genética
13.
Data Brief ; 33: 106499, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33225034

RESUMO

Respiratory syncytial virus (RSV) is the primary cause for acute lower respiratory syndrome in children younger than 5 years. Research on B cell repertoires and antibodies binding the RSV fusion protein (RSV F) is of major interest in the development of potential vaccine candidates and therapies. B cell receptors (BCRs) which have higher affinities for a specific antigen are preferentially selected for B cell clonal expansion in germinal center reactions. Consequently, antigen-specific BCR repertoires share common features, as for instance preferential variable gene usage, variable region mutation levels or lengths of the heavy chain complementarity-determining region 3. Since RSV repeatedly infects every person throughout life, memory B cells (MBC) expressing RSV F-binding BCRs circulate in the blood of healthy adults. This dataset of BCR variable region sequence features was derived from single cell-sorted RSV F-directed MBCs of a healthy adult blood donor [1]. The dataset was produced with publicly available data analysis software programs and scripts, which facilitates integration or comparison with antibody sequence repertoire data of different individuals derived with the same or comparable data analysis approaches and tools.

14.
Vaccine ; 38(50): 7916-7927, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33131932

RESUMO

Respiratory syncytial virus (RSV) is the major cause of acute lower respiratory illness in children of less than 5 years of age which usually results in hospitalization or even in death. Vaccine development is hampered in consequence of a failed vaccine trial with fatalities in the 1960s. Even though research has been more focused on the RSV fusion protein in its pre-fusion conformation, maternal vaccination with post-fusion protein (post F) was considered as a promising vaccine strategy for passive immunization of babies, because post F preserves very potent neutralizing epitopes. We extensively analyzed post F-binding B cell receptor (BCR) repertoires of three vaccinees who received a post F-subunit vaccine in the context of a first-in-human, Phase 1, randomized, observer-blind, placebo-controlled clinical trial (ClinicalTrials.gov Identifier: NCT02298179). In order to compare the vaccine-induced BCR repertoires with BCR repertoires induced by natural infection, we also analyzed pre F- and post F-binding BCRs isolated from a healthy blood donor with relatively high F-binding memory B cell (MBC) frequencies. Analysis of the vaccine-induced repertoires revealed that preferentially VH4-encoded BCRs were expanded in response to vaccination. Estimation of antigen-driven selection further demonstrated that expanded BCRs accumulated positively selected replacement mutations which substantiated the hypothesis that post F-vaccination induces diversification of VH4-encoded BCRs in germinal centers. Comparison of the vaccine-induced BCR repertoires with clonally related pre and post F-binding BCRs of the healthy blood donor suggested that the vaccine expanded pre/post F cross-reactive MBCs. Interestingly, several vaccine-induced BCRs shared stereotypic VDJ gene junctions with known neutralizing Abs. Once expressed for functional characterization, the selected monoclonal Abs demonstrated the predicted neutralization activities in plaque reduction neutralization assays indicating that the post F-vaccine induced expansion of neutralizing BCRs.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Antígenos de Linfócitos B/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinação , Vacinas de Subunidades Antigênicas , Proteínas Virais de Fusão/genética
15.
Front Oncol ; 8: 481, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416985

RESUMO

Human FAT1 is overexpressed on the surface of most colorectal cancers (CRCs) and in particular a 25 amino acid sequence (D8) present in one of the 34 cadherin extracellular repeats carries the epitope recognized by mAb198.3, a monoclonal antibody which partially protects mice from the challenge with human CRC cell lines in xenograft mouse models. Here we present data in immune competent mice demonstrating the potential of the D8-FAT1 epitope as CRC cancer vaccine. We first demonstrated that the mouse homolog of D8-FAT1 (mD8-FAT1) is also expressed on the surface of CT26 and B16F10 murine cell lines. We then engineered bacterial outer membranes vesicles (OMVs) with mD8-FAT1 and we showed that immunization of BALB/c and C57bl6 mice with engineered OMVs elicited anti-mD8-FAT1 antibodies and partially protected mice from the challenge against CT26 and EGFRvIII-B16F10 cell lines, respectively. We also show that when combined with OMVs decorated with the EGFRvIII B cell epitope or with OMVs carrying five tumor-specific CD4+ T cells neoepitopes, mD8-FAT1 OMVs conferred robust protection against tumor challenge in C57bl6 and BALB/c mice, respectively. Considering that FAT1 is overexpressed in both KRAS+ and KRAS- CRCs, these data support the development of anti-CRC cancer vaccines in which the D8-FAT1 epitope is used in combination with other CRC-specific antigens, including mutation-derived neoepitopes.

16.
PLoS One ; 12(10): e0185843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29088224

RESUMO

MF59 is an oil-in-water emulsion adjuvant approved for human influenza vaccination in European Union. The mode of action of MF59 is not fully elucidated yet, but results from several years of investigation indicate that MF59 establishes an immunocompetent environment at injection site which promotes recruitment of immune cells, including antigen presenting cells (APCs), that are facilitated to engulf antigen and transport it to draining lymph node (dLN) where the antigen is accumulated. In vitro studies showed that MF59 promotes the differentiation of monocytes to dendritic cells (Mo-DCs). Since after immunization with MF59, monocytes are rapidly recruited both at the injection site and in dLN and appear to have a morphological change toward a DC-like phenotype, we asked whether MF59 could play a role in inducing differentiation of Mo-DC in vivo. To address this question we immunized mice with the auto-fluorescent protein Phycoerythrin (PE) as model antigen, in presence or absence of MF59. We measured the APC phenotype and their antigen uptake within dLNs, the antigen distribution within the dLN compartments and the humoral response to PE. In addition, using Ovalbumin as model antigen, we measured the capacity of dLN APCs to induce antigen-specific CD4 T cell proliferation. Here, we show, for the first time, that MF59 promotes differentiation of Mo-DCs within dLNs from intranodal recruited monocytes and we suggest that this differentiation could take place in the medullary compartment of the LN. In addition we show that the Mo-DC subset represents the major source of antigen-loaded and activated APCs within the dLN when immunizing with MF59. Interestingly, this finding correlates with the enhanced triggering of antigen-specific CD4 T cell response induced by LN APCs. This study therefore demonstrates that MF59 is able to promote an immunocompetent environment also directly within the dLN, offering a novel insight on the mechanism of action of vaccine adjuvants based on emulsions.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Vacinas contra Influenza/administração & dosagem , Monócitos/citologia , Polissorbatos/farmacologia , Esqualeno/farmacologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
17.
Front Oncol ; 7: 253, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29164053

RESUMO

INTRODUCTION: Bacterial outer membrane vesicles (OMVs) are naturally produced by all Gram-negative bacteria and, thanks to their plasticity and unique adjuvanticity, are emerging as an attractive vaccine platform. To test the applicability of OMVs in cancer immunotherapy, we decorated them with either one or two protective epitopes present in the B16F10EGFRvIII cell line and tested the protective activity of OMV immunization in C57BL/6 mice challenged with B16F10EGFRvIII. MATERIALS AND METHODS: The 14 amino acid B cell epitope of human epidermal growth factor receptor variant III (EGFRvIII) and the mutation-derived CD4+ T cell neo-epitope of kif18b gene (B16-M30) were used to decorate OMVs either alone or in combination. C57BL/6 were immunized with the OMVs and then challenged with B16F10EGFRvIII cells. Immunogenicity and protective activity was followed by measuring anti-EGFRvIII antibodies, M30-specific T cells, tumor-infiltrating cell population, and tumor growth. RESULTS: Immunization with engineered EGFRvIII-OMVs induced a strong inhibition of tumor growth after B16F10EGFRvIII challenge. Furthermore, mice immunized with engineered OMVs carrying both EGFRvIII and M30 epitopes were completely protected from tumor challenge. Immunization was accompanied by induction of high anti-EGFRvIII antibody titers, M30-specific T cells, and infiltration of CD4+ and CD8+ T cells at the tumor site. CONCLUSION: OMVs can be decorated with tumor antigens and can elicit antigen-specific, protective antitumor responses in immunocompetent mice. The synergistic protective activity of multiple epitopes simultaneously administered with OMVs makes the OMV platform particularly attractive for cancer immunotherapy.

18.
PLoS One ; 11(1): e0147767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26812180

RESUMO

A rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine. This increased efficacy was paralleled by higher vaccine-specific and α-hemolysin-neutralizing antibody titers and Th1/Th17 cell responses. Antibodies played a crucial protective role, as shown by the lack of protection of 4C-Staph/T7-alum vaccine in B-cell-deficient mice and by serum transfer experiments. Depletion of effector CD4+ T cells not only reduced survival but also increased S. aureus load in kidneys of mice immunized with 4C-Staph/T7-alum. The role of IL-17A in the control of bacterial dissemination in 4C-Staph/T7-alum vaccinated mice was indicated by in vivo neutralization experiments. We conclude that single dose 4C-Staph/T7-alum vaccine promptly and efficiently protected mice against S. aureus through the combined actions of antibodies, CD4+ effector T cells, and IL-17A. These data suggest that inclusion of an adjuvant that induces not only fast antibody responses but also IL-17-producing cell-mediated effector responses could efficaciously protect patients scheduled for major surgeries or in intensive care units.


Assuntos
Anticorpos Antibacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucina-17/metabolismo , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Receptor 7 Toll-Like/metabolismo , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/citologia , Citocinas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Baço/metabolismo , Baço/patologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/genética , Taxa de Sobrevida , Células Th1/imunologia , Células Th17/imunologia , Receptor 7 Toll-Like/imunologia
19.
Sci Rep ; 6: 38043, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901071

RESUMO

Staphylococcus aureus is the major cause of human septic arthritis and osteomyelitis, which deserve special attention due to their rapid evolution and resistance to treatment. The progression of the disease depends on both bacterial presence in situ and uncontrolled disruptive immune response, which is responsible for chronic disease. Articular and bone infections are often the result of blood bacteremia, with the knees and hips being the most frequently infected joints showing the worst clinical outcome. We report the development of a hematogenous model of septic arthritis in murine knees, which progresses from an acute to a chronic phase, similarly to what occurs in humans. Characterization of the local and systemic inflammatory and immune responses following bacterial infection brought to light specific signatures of disease. Immunization of mice with the vaccine formulation we have recently described (4C-Staph), induced a strong antibody response and specific CD4+ effector memory T cells, and resulted in reduced bacterial load in the knee joints, a milder general inflammatory state and protection against bacterial-mediated cellular toxicity. Possible correlates of protection are finally proposed, which might contribute to the development of an effective vaccine for human use.


Assuntos
Artrite Infecciosa , Articulação do Joelho , Infecções Estafilocócicas , Vacinas Antiestafilocócicas , Staphylococcus aureus/imunologia , Vacinação , Animais , Artrite Infecciosa/imunologia , Artrite Infecciosa/microbiologia , Artrite Infecciosa/patologia , Artrite Infecciosa/prevenção & controle , Feminino , Articulação do Joelho/imunologia , Articulação do Joelho/microbiologia , Articulação do Joelho/patologia , Camundongos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Vacinas Antiestafilocócicas/farmacologia
20.
Front Immunol ; 6: 439, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441955

RESUMO

Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA