RESUMO
Spintronics devices rely on the generation and manipulation of spin currents. Two-dimensional transition-metal dichalcogenides (TMDs) are among the most promising materials for a spin current generation due to a lack of inversion symmetry at the interface with the magnetic material. Here, we report on the fabrication of Yttrium Iron Garnet(YIG)/TMD heterostructures by means of a crude and fast method. While the magnetic insulator single-crystalline YIG thin films were grown by magnetron sputtering, the TMDs, namely MoS2 and MoSe2, were directly deposited onto YIG films using an automated mechanical abrasion method. Despite the brute force aspect of the method, it produces high-quality interfaces, which are suitable for spintronic device applications. The spin current density and the effective spin mixing conductance were measured by ferromagnetic resonance, whose values found are among the highest reported in the literature. Our method can be scaled to produce ferromagnetic materials/TMD heterostructures on a large scale, further advancing their potential for practical applications.
RESUMO
The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO(2)) conditions was maximized. The EC: iron cathode/anode (12.50 cmx2.50 cmx0.10 cm), current density 763Am(-2), 90min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO(2)/H(2)O(2) (mercury lamps), pH 3.0, 4h irradiation, 0.25gL(-1) TiO(2) and 10mmolL(-1) H(2)O(2) shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753mgL(-1) for the sample from the factory, 160mgL(-1) after EC and 50mgL(-1) after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification.