Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Biol Sci ; 289(1982): 20220941, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100023

RESUMO

Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (µtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid-base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Ecossistema , Homeostase , Concentração de Íons de Hidrogênio , Água do Mar
2.
J Phycol ; 58(1): 55-70, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34612522

RESUMO

In sessile organisms, phenotypic plasticity represents an important strategy for dealing with environmental variability. Here we test if phenotypic plasticity enables the common coral Stylophora pistillata to occupy a broad niche. We find clear differences in the photo-physiology of four putative species of photosynthetic dinoflagellate symbionts associated with the coral S. pistillata, namely, Cladocopium 'C35a', 'C79', 'C78a' and 'C8a'. Coral phenotypic responses were also tightly linked to symbiont identity. Corals with Cladocopium 'C8a' have more "open" macro-morphology compared to colonies associating with depth-restricted Cladocopium 'C35a' or 'C78a' in the same shallow water habitat. Corals with Cladocopium 'C8a' had 40 to 60% lower symbiont cell densities compared to other holobionts but were more efficient at acclimating over a range of light levels, with clear mechanisms to dissipate excess light energy. This holobiont contains host-based green fluorescent pigments, increased concentrations of symbiont-based mycosporine amino acids, and xanthophyll cycling in high light habitats. Photosynthetic efficiency was also adjusted over the light habitat. In contrast, limited micro-scale responses were observed between three depth-restricted symbionts: Cladocopium 'C79', 'C35a', and 'C78a'. To optimize light levels reaching the photosynthetic unit, these colonies rely on a more closed macro-morphology under high light levels, which reduces incident light levels by up to 43%, and higher symbiont densities . Our results show that distinct macro- and micro-scale adaptations lead to functional differences between four distinct S. pistillata holobionts, allowing them to co-exist by filling specific niches on a small, but environmentally diverse, spatial scale. Key index words: Light, Symbiodiniaceae, coral, pigments, Stylophora pistillata, ITS2, phenotypic plasticity, niche diversification.


Assuntos
Antozoários , Dinoflagellida , Adaptação Fisiológica , Animais , Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Ecossistema , Simbiose/fisiologia
3.
Glob Chang Biol ; 25(11): 3918-3931, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472029

RESUMO

Environmental anomalies that trigger adverse physiological responses and mortality are occurring with increasing frequency due to climate change. At species' range peripheries, environmental anomalies are particularly concerning because species often exist at their environmental tolerance limits and may not be able to migrate to escape unfavourable conditions. Here, we investigated the bleaching response and mortality of 14 coral genera across high-latitude eastern Australia during a global heat stress event in 2016. We evaluated whether the severity of assemblage-scale and genus-level bleaching responses was associated with cumulative heat stress and/or local environmental history, including long-term mean temperatures during the hottest month of each year (SSTLTMAX ), and annual fluctuations in water temperature (SSTVAR ) and solar irradiance (PARZVAR ). The most severely-bleached genera included species that were either endemic to the region (Pocillopora aliciae) or rare in the tropics (e.g. Porites heronensis). Pocillopora spp., in particular, showed high rates of immediate mortality. Bleaching severity of Pocillopora was high where SSTLTMAX was low or PARZVAR was high, whereas bleaching severity of Porites was directly associated with cumulative heat stress. While many tropical Acropora species are extremely vulnerable to bleaching, the Acropora species common at high latitudes, such as A. glauca and A. solitaryensis, showed little incidence of bleaching and immediate mortality. Two other regionally-abundant genera, Goniastrea and Turbinaria, were also largely unaffected by the thermal anomaly. The severity of assemblage-scale bleaching responses was poorly explained by the environmental parameters we examined. Instead, the severity of assemblage-scale bleaching was associated with local differences in species abundance and taxon-specific bleaching responses. The marked taxonomic disparity in bleaching severity, coupled with high mortality of high-latitude endemics, point to climate-driven simplification of assemblage structures and progressive homogenisation of reef functions at these high-latitude locations.


Assuntos
Antozoários , Animais , Austrália , Mudança Climática , Recifes de Corais , Refúgio de Vida Selvagem , Temperatura
4.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28835555

RESUMO

Understanding how range-edge populations will respond to climate change is an urgent research priority. Here, we used a phylogenetic community ecology approach to examine how ecological and evolutionary processes shape biodiversity patterns of scleractinian corals at their high-latitude range limits in eastern Australia. We estimated phylogenetic signal in seven ecologically important functional traits and conducted tests of phylogenetic structure at local and regional scales using the net relatedness (NRI) and nearest taxon indices (NTI) for the presence/absence and abundance data. Regional tests showed light phylogenetic clustering, indicating that coral species found in this subtropical-to-temperate transition zone are more closely related to each other than are species on the nearby, more northerly Great Barrier Reef. Local tests revealed variable patterns of phylogenetic clustering and overdispersion and higher than expected phylogenetic turnover among sites. In combination, these results are broadly consistent with the hierarchical filtering model, whereby species pass through a regional climatic filter based on their tolerances for marginal conditions and subsequently segregate into local assemblages according to the relative strength of habitat filtering and species interactions. Conservatism of tested traits suggests that corals will likely track their niches with climate change. Nevertheless, high turnover of lineages among sites indicates that range shifts will probably vary among species and highlights the vulnerability and conservation significance of high-latitude reefs.


Assuntos
Antozoários/classificação , Biodiversidade , Evolução Biológica , Filogenia , Animais , Austrália , Mudança Climática , Recifes de Corais , Ecossistema
5.
J Phycol ; 53(3): 589-600, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28196275

RESUMO

The broad range in physiological variation displayed by Symbiodinium spp. has proven imperative during periods of environmental change and contribute to the survival of their coral host. Characterizing how host and Symbiodinium community assemblages differ across environmentally distinct habitats provides useful information to predict how corals will respond to major environmental change. Despite the extensive characterizations of Symbiodinium diversity found amongst reef cnidarians on the Great Barrier Reef (GBR) substantial biogeographic gaps exist, especially across inshore habitats. Here, we investigate Symbiodinium community patterns in invertebrates from inshore and mid-shelf reefs on the southern GBR, Australia. Dominant Symbiodinium types were characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Twenty one genetically distinct Symbiodinium types including four novel types were identified from 321 reef-invertebrate samples comprising three sub-generic clades (A, C, and D). A range of host genera harbored C22a, which is normally rare or absent from inshore or low latitude reefs in the GBR. Multivariate analysis showed that host identity and sea surface temperature best explained the variation in symbiont communities across sites. Patterns of changes in Symbiodinium community assemblage over small geographic distances (100s of kilometers or less) indicate the likelihood that shifts in Symbiodinium distributions and associated host populations, may occur in response to future climate change impacting the GBR.


Assuntos
Dinoflagellida/fisiologia , Invertebrados/parasitologia , Simbiose , Animais , Biota , Recifes de Corais , Dinoflagellida/classificação , Invertebrados/fisiologia , Queensland
6.
Proc Biol Sci ; 282(1801): 20142260, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25589607

RESUMO

The global distribution of marine species, many of which disperse during the larval stages, is influenced by ocean temperature regimes. Here, we test how temperature and the coral symbionts (Symbiodinium) affect survival, symbiont uptake, settlement success and habitat choice of Acropora millepora larvae. Experiments were conducted at Heron Island (Australia), where larvae were exposed to 22.5, 24.5, 26.5 and 28.5°C. Within each temperature treatment, larvae were offered symbionts with distinct characteristics: (i) homologous Symbiodinium type C3, (ii) regionally homologous thermo-tolerant type D1, and (iii) heterologous thermo-tolerant type C15, as well as controls of (iv) un-filtered and (v) filtered seawater. Results show that lower instead of higher temperatures adversely affected recruitment by reducing larval survival and settlement. Low temperatures also reduced recruit habitat choice and initial symbiont densities, both of which impact on post-settlement survival. At lower temperatures, larvae increasingly settle away from preferred vertical surfaces and not on crustose coralline algae (CCA). Surprisingly, substrate preference to CCA was modified by the presence of specific symbiont genotypes that were present ex-hospite (outside the coral larvae). When different symbionts were mixed, the outcomes were non-additive, indicating that symbiont interactions modify the response. We propose that the observed influence of ex-hospite symbionts on settlement behaviour may have evolved through ecological facilitation and the study highlights the importance of biological processes during coral settlement.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Simbiose , Animais , Recifes de Corais , Sinais (Psicologia) , Ecossistema , Temperatura Alta , Larva/fisiologia , Dinâmica Populacional , Queensland
7.
J Phycol ; 50(3): 552-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26988327

RESUMO

Despite extensive work on the genetic diversity of reef invertebrate-dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid-shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty-nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross-shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host-specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions.

8.
BMC Ecol ; 13: 7, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23497177

RESUMO

BACKGROUND: The algal endosymbionts (genus Symbiodinium) associated with scleractinian corals (and other reef invertebrates) have received a lot of research attention in the past decade, particularly as certain host-symbiont associations appear more affected by increasing seawater temperatures than others. With the rapid accumulation of information on the diversity of Symbiodinium, it is becoming increasingly difficult to compare newly acquired Symbiodinium data with existing data to detect patterns of host-symbiont specificity on broader spatial scales. The lack of a general consensus on the classification of Symbiodinium species coupled with the variety of different markers used to identify the genus Symbiodinium (ITS1, ITS2, LSU D1/D2, chloroplast 23S rDNA and psbA minicircle) further complicate direct comparison. DESCRIPTION: The SymbioGBR database compiles all currently available Symbiodinium sequences and associated host information of data collected from the Great Barrier Reef into a single relational database that is accessible via a user-friendly, searchable web-based application (http://www.SymbioGBR.org). SymbioGBR allows users to query Symbiodinium types or sequences sourced from various genetic markers (e.g. ITS1, ITS2, LSU D1/D2 and chloroplast 23S) and invertebrate host species to explore their reported associations. In addition, as the database includes sequence information of multiple genetic markers, it allows cross-referencing between conventional (e.g. ITS2 region) and novel markers that exhibit low intragenomic variability (e.g. psbA region). Finally, the database is based on the collection details of individual specimens. Such host-symbiont associations can be assessed quantitatively and viewed in relation to their environmental and geographic context. CONCLUSIONS: The SymbioGBR database provides a comprehensive overview of Symbiodinium diversity and host-associations on the Great Barrier Reef. It provides a quick, user-friendly means to compare newly acquired data on Symbiodinium (e.g. raw sequences or characterized Symbiodinium types) with previous data on the diversity of invertebrate host-symbiont associations on the GBR. The inclusion of psbAncr sequence information allows for validation of widely used ITS1/ITS2 markers and their ability to accurately identify relevant sequences. Most importantly, centralization of sequence information from multiple genetic markers will aid the classification of Symbiodinium species diversity and allow researchers to easily compare patterns of host-Symbiodinium associations.


Assuntos
Antozoários/microbiologia , Recifes de Corais , Bases de Dados Genéticas , Dinoflagellida/genética , Animais , Austrália , DNA Espaçador Ribossômico/genética , Dinoflagellida/classificação , Marcadores Genéticos , Internet , Análise de Sequência de DNA , Simbiose , Interface Usuário-Computador
9.
Ecol Evol ; 13(12): e10798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38099138

RESUMO

Back-to-back marine heatwaves in 2016 and 2017 resulted in severe coral bleaching and mortality across the Great Barrier Reef (GBR). Encouragingly, some corals that survived these events exhibit increased bleaching resistance and may represent thermally tolerant populations that can better cope with ocean warming. Using the GBR as a natural laboratory, we investigated whether a history of minimal (Heron Island) or severe (Lizard Island) coral bleaching in 2016 and 2017 equates to stress tolerance in a successive heatwave (2020). We examined the genetic diversity, physiological performance, and trophic plasticity of juvenile (<10 cm) and adult (>25 cm) corals of two common genera (Pocillopora and Stylophora). Despite enduring greater cumulative heat stress (6.3°C week-1 vs. 5.6°C week-1), corals that experienced the third marine heatwave in 5 years (Lizard) exhibited twice as high survival and visual bleaching thresholds compared to corals that had not experienced significant bleaching in >10 years (Heron). Surprisingly, only one shared host-Symbiodiniaceae association was uncovered between locations (Stylophora pistillata-Cladocopium "C8 group") and there was no genetic overlap in Pocillopora-Cladocopium partnerships, suggesting turnover in species composition from recent marine heatwaves. Corals within the species complex Pocillopora that survived the 2016 and 2017 marine heatwaves at Lizard Island were the most resilient, exhibiting three times greater calcification rates than conspecifics at Heron Island. Further, surviving corals (Lizard) had distinct isotopic niches, lower host carbon, and greater host protein, while conspecifics that had not experienced recent bleaching (Heron) had two times greater symbiont carbon content, suggesting divergent trophic strategies that influenced survival (i.e., greater reliance on heterotrophy vs. symbiont autotrophy, respectively). Ultimately, while corals may experience less bleaching and survive repeated thermal stress events, species-specific trade-offs do occur, leaving open many questions related to the long-term health and recovery of coral reef ecosystems in the face of intensifying marine heatwaves.

10.
PeerJ ; 11: e15023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151292

RESUMO

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Assuntos
Recifes de Corais , Dinoflagellida , Variação Genética , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia , Consenso , Antozoários , Simbiose
11.
Microb Ecol ; 60(1): 250-63, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20502891

RESUMO

Dinoflagellates in the genus Symbiodinium are among the most abundant and important group of eukaryotic microbes found in coral reef ecosystems. Recent analyses conducted on various host cnidarians indicated that Symbiodinium assemblages in the Caribbean Sea are genetically and ecologically diverse. In order to further characterize this diversity and identify processes important to its origins, samples from six orders of Cnidaria comprising 45 genera were collected from reef habitats around Barbados (eastern Caribbean) and from the Mesoamerican barrier reef off the coast of Belize (western Caribbean). Fingerprinting of the ribosomal internal transcribed spacer 2 identified 62 genetically different Symbiodinium. Additional analyses of clade B Symbiodinium using microsatellite flanker sequences unequivocally characterized divergent lineages, or "species," within what was previously thought to be a single entity (B1 or B184). In contrast to the Indo-Pacific where host-generalist symbionts dominate many coral communities, partner specificity in the Caribbean is relatively high and is influenced little by the host's apparent mode of symbiont acquisition. Habitat depth (ambient light) and geographic isolation appeared to influence the bathymetric zonation and regional distribution for most of the Symbiodinium spp. characterized. Approximately 80% of Symbiodinium types were endemic to either the eastern or western Caribbean and 40-50% were distributed to compatible hosts living in shallow, high-irradiance, or deep, low-irradiance environments. These ecologic, geographic, and phylogenetic patterns indicate that most of the present Symbiodinium diversity probably originated from adaptive radiations driven by ecological specialization in separate Caribbean regions during the Pliocene and Pleistocene periods.


Assuntos
Antozoários/microbiologia , Dinoflagellida/genética , Ecossistema , Simbiose , Animais , Região do Caribe , DNA Espaçador Ribossômico/genética , Dinoflagellida/classificação , Geografia , Repetições de Microssatélites , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
12.
Microbiome ; 8(1): 8, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32008576

RESUMO

BACKGROUND: The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining their resilience to future climate change. Changes in coral microbiome composition (particularly for microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters. The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity to thrive in warm waters in this region, is entirely unknown. RESULTS: We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis, Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea spanning 4° of latitude and summer mean temperature ranges from 26.6 °C to 29.3 °C. A total of 19 distinct dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae (Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer (SML)-a compartment particularly sensitive to environmental change-varied significantly between sites, however for any given coral was species-specific. CONCLUSION: The conserved endosymbiotic community suggests high physiological plasticity to support holobiont productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the selective and endemic nature of coral microbiomes along the northern Red Sea refugia.


Assuntos
Antozoários/microbiologia , Bactérias/classificação , Dinoflagellida/fisiologia , Especificidade de Hospedeiro , Microbiota , Simbiose , Aclimatação , Animais , Recifes de Corais , Dinoflagellida/classificação , Temperatura Alta , Oceano Índico
13.
Microbiome ; 8(1): 24, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085815

RESUMO

Following publication of the original article [1], the authors reported an error on the legend of of P.damicornis in Fig. 1.

14.
Sci Rep ; 6: 36271, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805069

RESUMO

As climate change progresses, understanding the long-term response of corals and their endosymbionts (Symbiodinium) to prolonged environmental change is of immediate importance. Here, a total of 1152 fragments from 72 colonies of three common coral species (Stylophora pistillata, Pocillopora damicornis, Seriatopora hystrix) underwent a 32-month reciprocal depth transplantation. Genetic analysis showed that while S. hystrix maintained its generalist symbiont, some S. pistillata and P. damicornis underwent temporary changes in resident symbionts immediately after stress (transplantation; natural bleaching). These temporary changes were phylogenetically constrained to 'host-compatible' symbionts only and reversion to original symbionts occurred within 7 to 12 months, indicating long-term fidelity and stability of adult symbioses. Measurements of symbiont photo-physiology (dark adapted yield, pressure over photosystem II) and coral health (host protein, bleaching status, mortality) indicated a broad acclimatory capacity. However, this came at an apparent energetic expense as disproportionate mortality amongst symbioses that persisted outside their distribution range was observed following a natural bleaching event. As environmental changes due to climate change become more continuous in nature, sub-lethal effects linked to the existence near tolerance range limits coupled with the inability of adult coral colonies to change resident symbionts makes corals particularly susceptible to additional environmental fluctuations or stress events and reduces the resilience of coral populations.


Assuntos
Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Simbiose , Adaptação Fisiológica/fisiologia , Animais , Antozoários/classificação , Antozoários/parasitologia , Dinoflagellida/fisiologia , Ecossistema , Especificidade de Hospedeiro , Luz , Especificidade da Espécie , Temperatura
15.
PLoS One ; 8(7): e68533, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844217

RESUMO

BACKGROUND: The endosymbiotic dinoflagellates (genus Symbiodinium) within coral reef invertebrates are critical to the survival of the holobiont. The genetic variability of Symbiodinium may contribute to the tolerance of the symbiotic association to elevated sea surface temperatures (SST). To assess the importance of factors such as the local environment, host identity and biogeography in driving Symbiodinium distributions on reef-wide scales, data from studies on reef invertebrate-Symbiodinium associations from the Great Barrier Reef (GBR) were compiled. METHODOLOGY/PRINCIPAL FINDINGS: The resulting database consisted of 3717 entries from 26 studies. It was used to explore ecological patterns such as host-specificity and environmental drivers structuring community complexity using a multi-scalar approach. The data was analyzed in several ways: (i) frequently sampled host species were analyzed independently to investigate the influence of the environment on symbiont distributions, thereby excluding the influence of host specificity, (ii) host species distributions across sites were added as an environmental variable to determine the contribution of host identity on symbiont distribution, and (iii) data were pooled based on clade (broad genetic groups dividing the genus Symbiodinium) to investigate factors driving Symbiodinium distributions using lower taxonomic resolution. The results indicated that host species identity plays a dominant role in determining the distribution of Symbiodinium and environmental variables shape distributions on a host species-specific level. SST derived variables (especially SSTstdev) most often contributed to the selection of the best model. Clade level comparisons decreased the power of the predictive model indicating that it fails to incorporate the main drivers behind Symbiodinium distributions. CONCLUSIONS/SIGNIFICANCE: Including the influence of different host species on Symbiodinium distributional patterns improves our understanding of the drivers behind the complexity of Symbiodinium-invertebrate symbioses. This will increase our ability to generate realistic models estimating the risk reefs are exposed to and their resilience in response to a changing climate.


Assuntos
Recifes de Corais , Dinoflagellida/fisiologia , Meio Ambiente , Simbiose , Animais , Biodiversidade , Ecossistema , Especificidade de Hospedeiro , Oceanografia
16.
PLoS One ; 5(5): e10871, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20523735

RESUMO

BACKGROUND: Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection. METHODOLOGY/PRINCIPAL FINDINGS: Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a approximately 30 m depth range) at three locations on the Great Barrier Reef (n = 336). The populations were assessed for genetic structure using a combination of mitochondrial (putative control region) and nuclear (three microsatellites) markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium). Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix.


Assuntos
Antozoários/genética , Ecossistema , Eucariotos/genética , Variação Genética , Repetições de Microssatélites/genética , Simbiose/genética , Animais , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Genótipo , Filogenia
17.
Mol Ecol ; 16(17): 3721-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17845444

RESUMO

Reef-building corals are fundamental to the most diverse marine ecosystems, yet a detailed understanding of the processes involved in the establishment, persistence and ecology of the coral-dinoflagellate association remains largely unknown. This study explores symbiont diversity in relation to habitat by employing a broad-scale sampling regime using ITS2 and denaturing gradient gel electrophoresis. Samples from Pocillopora damicornis, Stylophora pistillata and Seriatopora hystrix all harboured host-specific clade C symbiont types at Heron Island (Great Barrier Reef, Australia). While Ser. hystrix associated with a single symbiont profile along its entire depth distribution, both P. damicornis and Sty. pistillata associated with multiple symbiont profiles that showed a strong zonation with depth. It is shown that, with an increased sampling effort, previously identified 'rare' symbiont types within this group of host species are in fact environmental specialists. A multivariate approach was used to expand on the common distinction of symbionts by a single genetic identity. It shows merit in its capacity not only to include all the variability present within the marker region but also to reliably represent ecological diversification of symbionts. Furthermore, the cohesive species concept is explored to explain how niche partitioning may drive diversification of closely related symbiont lineages. This study provides thus evidence that closely related symbionts are ecologically distinct and fulfil their own niche within the ecosystem provided by the host and external environment.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Ecossistema , Simbiose , Animais , Antozoários/classificação , Antozoários/genética , Austrália , DNA Espaçador Ribossômico/química , Dinoflagellida/classificação , Dinoflagellida/genética , Análise Multivariada , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA