Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Rep ; 13(1): 20087, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973926

RESUMO

In this article, we introduce a decentralized digital twin (DDT) modeling framework and its potential applications in computational science and engineering. The DDT methodology is based on the idea of federated learning, a subfield of machine learning that promotes knowledge exchange without disclosing actual data. Clients can learn an aggregated model cooperatively using this method while maintaining complete client-specific training data. We use a variety of dynamical systems, which are frequently used as prototypes for simulating complex transport processes in spatiotemporal systems, to show the viability of the DDT framework. Our findings suggest that constructing highly accurate decentralized digital twins in complex nonlinear spatiotemporal systems may be made possible by federated machine learning.

2.
Sci Rep ; 13(1): 7767, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173401

RESUMO

Differential equations are the foundation of mathematical models representing the universe's physics. Hence, it is significant to solve partial and ordinary differential equations, such as Navier-Stokes, heat transfer, convection-diffusion, and wave equations, to model, calculate and simulate the underlying complex physical processes. However, it is challenging to solve coupled nonlinear high dimensional partial differential equations in classical computers because of the vast amount of required resources and time. Quantum computation is one of the most promising methods that enable simulations of more complex problems. One solver developed for quantum computers is the quantum partial differential equation (PDE) solver, which uses the quantum amplitude estimation algorithm (QAEA). This paper proposes an efficient implementation of the QAEA by utilizing Chebyshev points for numerical integration to design robust quantum PDE solvers. A generic ordinary differential equation, a heat equation, and a convection-diffusion equation are solved. The solutions are compared with the available data to demonstrate the effectiveness of the proposed approach. We show that the proposed implementation provides a two-order accuracy increase with a significant reduction in solution time.

3.
Neural Netw ; 146: 181-199, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894481

RESUMO

In this work, we introduce, justify and demonstrate the Corrective Source Term Approach (CoSTA)-a novel approach to Hybrid Analysis and Modeling (HAM). The objective of HAM is to combine physics-based modeling (PBM) and data-driven modeling (DDM) to create generalizable, trustworthy, accurate, computationally efficient and self-evolving models. CoSTA achieves this objective by augmenting the governing equation of a PBM model with a corrective source term generated using a deep neural network. In a series of numerical experiments on one-dimensional heat diffusion, CoSTA is found to outperform comparable DDM and PBM models in terms of accuracy - often reducing predictive errors by several orders of magnitude - while also generalizing better than pure DDM. Due to its flexible but solid theoretical foundation, CoSTA provides a modular framework for leveraging novel developments within both PBM and DDM. Its theoretical foundation also ensures that CoSTA can be used to model any system governed by (deterministic) partial differential equations. Moreover, CoSTA facilitates interpretation of the DNN-generated source term within the context of PBM, which results in improved explainability of the DNN. These factors make CoSTA a potential door-opener for data-driven techniques to enter high-stakes applications previously reserved for pure PBM.


Assuntos
Redes Neurais de Computação , Física
4.
Sci Rep ; 12(1): 17947, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289290

RESUMO

A central challenge in the computational modeling and simulation of a multitude of science applications is to achieve robust and accurate closures for their coarse-grained representations due to underlying highly nonlinear multiscale interactions. These closure models are common in many nonlinear spatiotemporal systems to account for losses due to reduced order representations, including many transport phenomena in fluids. Previous data-driven closure modeling efforts have mostly focused on supervised learning approaches using high fidelity simulation data. On the other hand, reinforcement learning (RL) is a powerful yet relatively uncharted method in spatiotemporally extended systems. In this study, we put forth a modular dynamic closure modeling and discovery framework to stabilize the Galerkin projection based reduced order models that may arise in many nonlinear spatiotemporal dynamical systems with quadratic nonlinearity. However, a key element in creating a robust RL agent is to introduce a feasible reward function, which can be constituted of any difference metrics between the RL model and high fidelity simulation data. First, we introduce a multi-modal RL to discover mode-dependant closure policies that utilize the high fidelity data in rewarding our RL agent. We then formulate a variational multiscale RL (VMRL) approach to discover closure models without requiring access to the high fidelity data in designing the reward function. Specifically, our chief innovation is to leverage variational multiscale formalism to quantify the difference between modal interactions in Galerkin systems. Our results in simulating the viscous Burgers equation indicate that the proposed VMRL method leads to robust and accurate closure parameterizations, and it may potentially be used to discover scale-aware closure models for complex dynamical systems.

5.
Neural Netw ; 154: 333-345, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932722

RESUMO

The success of the current wave of artificial intelligence can be partly attributed to deep neural networks, which have proven to be very effective in learning complex patterns from large datasets with minimal human intervention. However, it is difficult to train these models on complex dynamical systems from data alone due to their low data efficiency and sensitivity to hyperparameters and initialisation. This work demonstrates that injection of partially known information at an intermediate layer in a DNN can improve model accuracy, reduce model uncertainty, and yield improved convergence during the training. The value of these physics-guided neural networks has been demonstrated by learning the dynamics of a wide variety of nonlinear dynamical systems represented by five well-known equations in nonlinear systems theory: the Lotka-Volterra, Duffing, Van der Pol, Lorenz, and Henon-Heiles systems.


Assuntos
Inteligência Artificial , Dinâmica não Linear , Humanos , Redes Neurais de Computação , Física
6.
Sci Rep ; 12(1): 5900, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393511

RESUMO

Recently, computational modeling has shifted towards the use of statistical inference, deep learning, and other data-driven modeling frameworks. Although this shift in modeling holds promise in many applications like design optimization and real-time control by lowering the computational burden, training deep learning models needs a huge amount of data. This big data is not always available for scientific problems and leads to poorly generalizable data-driven models. This gap can be furnished by leveraging information from physics-based models. Exploiting prior knowledge about the problem at hand, this study puts forth a physics-guided machine learning (PGML) approach to build more tailored, effective, and efficient surrogate models. For our analysis, without losing its generalizability and modularity, we focus on the development of predictive models for laminar and turbulent boundary layer flows. In particular, we combine the self-similarity solution and power-law velocity profile (low-fidelity models) with the noisy data obtained either from experiments or computational fluid dynamics simulations (high-fidelity models) through a concatenated neural network. We illustrate how the knowledge from these simplified models results in reducing uncertainties associated with deep learning models applied to boundary layer flow prediction problems. The proposed multi-fidelity information fusion framework produces physically consistent models that attempt to achieve better generalization than data-driven models obtained purely based on data. While we demonstrate our framework for a problem relevant to fluid mechanics, its workflow and principles can be adopted for many scientific problems where empirical, analytical, or simplified models are prevalent. In line with grand demands in novel PGML principles, this work builds a bridge between extensive physics-based theories and data-driven modeling paradigms and paves the way for using hybrid physics and machine learning modeling approaches for next-generation digital twin technologies.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Simulação por Computador , Hidrodinâmica , Física
7.
Neural Netw ; 152: 17-33, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35500457

RESUMO

Autonomous systems are becoming ubiquitous and gaining momentum within the marine sector. Since the electrification of transport is happening simultaneously, autonomous marine vessels can reduce environmental impact, lower costs, and increase efficiency. Although close monitoring is still required to ensure safety, the ultimate goal is full autonomy. One major milestone is to develop a control system that is versatile enough to handle any weather and encounter that is also robust and reliable. Additionally, the control system must adhere to the International Regulations for Preventing Collisions at Sea (COLREGs) for successful interaction with human sailors. Since the COLREGs were written for the human mind to interpret, they are written in ambiguous prose and therefore not machine-readable or verifiable. Due to these challenges and the wide variety of situations to be tackled, classical model-based approaches prove complicated to implement and computationally heavy. Within machine learning (ML), deep reinforcement learning (DRL) has shown great potential for a wide range of applications. The model-free and self-learning properties of DRL make it a promising candidate for autonomous vessels. In this work, a subset of the COLREGs is incorporated into a DRL-based path following and obstacle avoidance system using collision risk theory. The resulting autonomous agent dynamically interpolates between path following and COLREG-compliant collision avoidance in the training scenario, isolated encounter situations, and AIS-based simulations of real-world scenarios.


Assuntos
Aprendizado de Máquina , Reforço Psicológico , Coleta de Dados , Humanos
8.
PLoS One ; 16(2): e0246092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571229

RESUMO

Hybrid physics-machine learning models are increasingly being used in simulations of transport processes. Many complex multiphysics systems relevant to scientific and engineering applications include multiple spatiotemporal scales and comprise a multifidelity problem sharing an interface between various formulations or heterogeneous computational entities. To this end, we present a robust hybrid analysis and modeling approach combining a physics-based full order model (FOM) and a data-driven reduced order model (ROM) to form the building blocks of an integrated approach among mixed fidelity descriptions toward predictive digital twin technologies. At the interface, we introduce a long short-term memory network to bridge these high and low-fidelity models in various forms of interfacial error correction or prolongation. The proposed interface learning approaches are tested as a new way to address ROM-FOM coupling problems solving nonlinear advection-diffusion flow situations with a bifidelity setup that captures the essence of a broad class of transport processes.


Assuntos
Aprendizado de Máquina , Modelos Teóricos , Algoritmos , Big Data , Simulação por Computador , Fenômenos Físicos
9.
Front Robot AI ; 7: 566037, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585570

RESUMO

Control theory provides engineers with a multitude of tools to design controllers that manipulate the closed-loop behavior and stability of dynamical systems. These methods rely heavily on insights into the mathematical model governing the physical system. However, in complex systems, such as autonomous underwater vehicles performing the dual objective of path following and collision avoidance, decision making becomes nontrivial. We propose a solution using state-of-the-art Deep Reinforcement Learning (DRL) techniques to develop autonomous agents capable of achieving this hybrid objective without having a priori knowledge about the goal or the environment. Our results demonstrate the viability of DRL in path following and avoiding collisions towards achieving human-level decision making in autonomous vehicle systems within extreme obstacle configurations.

10.
Phys Rev E ; 102(4-1): 043302, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212713

RESUMO

In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full-field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.

11.
Phys Rev E ; 102(5-1): 053304, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327207

RESUMO

Complex natural or engineered systems comprise multiple characteristic scales, multiple spatiotemporal domains, and even multiple physical closure laws. To address such challenges, we introduce an interface learning paradigm and put forth a data-driven closure approach based on memory embedding to provide physically correct boundary conditions at the interface. To enable the interface learning for hyperbolic systems by considering the domain of influence and wave structures into account, we put forth the concept of upwind learning toward a physics-informed domain decomposition. The promise of the proposed approach is shown for a set of canonical illustrative problems. We highlight that high-performance computing environments can benefit from this methodology to reduce communication costs among processing units in emerging machine-learning-ready heterogeneous platforms toward exascale era.

12.
Phys Rev E ; 97(4-1): 042322, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758628

RESUMO

We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.

13.
Photodiagnosis Photodyn Ther ; 24: 7-14, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30144532

RESUMO

Due to their many unique properties, graphene quantum dots (GQDs) have attracted much attention and are a promising material with potential applications in many fields. One application of GQDs is as a photodynamic therapy agent that generates singlet oxygen. In this work, GQDs were grown by focusing nanosecond laser pulses into benzene and then were later combined with methylene blue (MB) and used to eradicate the Gram-negative bacteria, Escherichia coli, and Gram-positive bacteria, Micrococcus luteus. Theoretical calculation of pressure evolution was calculated using the standard finite difference method. Detailed characterization was performed with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), UV-vis (UV-vis), and photoluminescence (PL) spectra. Furthermore, MB-GQD singlet oxygen generation was investigated by measuring the rate of 9,10-anthracenediyl-bis(methylene) dimalonic acid photobleaching. Combining MB with GQDs caused enhanced singlet oxygen generation. Our results show that the MB-GQD combination efficiently destroys bacteria. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to determine if GQDs in dark conditions caused human cellular side-effects and affected cancer and noncancer cellular viability. We found that even high concentrations of GQDs do not alter viability under dark conditions. These results suggest that the MB-GQD combination is a promising form of photodynamic therapy.


Assuntos
Grafite/química , Terapia com Luz de Baixa Intensidade/métodos , Azul de Metileno/uso terapêutico , Pontos Quânticos/uso terapêutico , Oxigênio Singlete/agonistas , Compostos de Enxofre/uso terapêutico , Sobrevivência Celular/efeitos da radiação , Lasers de Estado Sólido , Azul de Metileno/administração & dosagem , Pontos Quânticos/administração & dosagem , Compostos de Enxofre/administração & dosagem
14.
Nat Comput Sci ; 1(5): 307-308, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-38217208
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA