Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332611

RESUMO

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Assuntos
Bases de Dados Genéticas , Laboratórios , Humanos , Variação Genética , Austrália , Testes Genéticos
2.
Genet Med ; 24(3): 673-680, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906512

RESUMO

PURPOSE: Some variants identified by multigene panel testing of DNA from blood present with low variant allele fraction (VAF), often a manifestation of clonal hematopoiesis. Research has shown that the proportion of variants with low VAF is especially high in TP53, the Li-Fraumeni syndrome gene. Based on the hypothesis that variants with low VAF are positively selected as drivers of clonal hematopoiesis, we investigated the use of VAF as a predictor of TP53 germline variant pathogenicity. METHODS: We used data from 260,681 TP53 variants identified at 2 laboratories to compare the distribution of pathogenic and benign variants at different VAF intervals. RESULTS: Likelihood ratios toward pathogenicity associated with a VAF < 26% equated to the American College of Medical Genetics/Association of Molecular Pathology strong strength level and were applicable for 1 in 5 variants of unknown significance. CONCLUSION: In conclusion, detection of variants with low VAF in blood can be considered an in vivo functional assay to aid assessment of TP53 variant pathogenicity.


Assuntos
Hematopoiese Clonal , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Humanos , Proteína Supressora de Tumor p53/genética
3.
J Clin Invest ; 129(5): 1940-1945, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835257

RESUMO

BRAF and CRAF are critical components of the MAPK signaling pathway which is activated in many cancer types. In approximately 1% of melanomas, BRAF or CRAF are activated through structural arrangements. We describe here a metastatic melanoma with a GOLGA4-RAF1 fusion and pathogenic variants in CTNNB1 and CDKN2A. Anti-CTLA4/anti-PD1 combination immunotherapy failed to control tumor progression. In the absence of other actionable variants the patient was administered MEK inhibitor therapy on the basis of its potential action against RAF1 fusions. This resulted in a profound and clinically significant response. We demonstrated that GOLGA4-RAF1 expression was associated with ERK activation, elevated expression of the RAS/RAF downstream co-effector ETV5, and a high Ki67 index. These findings provide a rationale for the dramatic response to targeted therapy. This study shows that thorough molecular characterization of treatment-resistant cancers can identify therapeutic targets and personalize management, leading to improved patient outcomes.


Assuntos
Autoantígenos/genética , MAP Quinase Quinase 1/antagonistas & inibidores , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-raf/genética , Neoplasias Cutâneas/genética , Idoso , Alelos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fluordesoxiglucose F18/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metástase Neoplásica , Proteínas de Fusão Oncogênica/metabolismo , Tomografia por Emissão de Pósitrons , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA