Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 273: 125896, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479027

RESUMO

Bioanalysis faces challenges in achieving fast, reliable, and point-of-care (POC) determination methods for timely diagnosis and prognosis of diseases. POC devices often display lower sensitivity compared to laboratory-based methods, limiting their ability to quantify low concentrations of target analytes. To enhance sensitivity, the synthesis of new materials and improvement of the efficiency of the analytical strategies are necessary. Enzyme-mimicking materials have revolutionized the field of the fabrication of new high-throughput sensing devices. The integration of microfluidic chips with analytical techniques offers several benefits, such as easy miniaturization, need for low biological sample volume, etc., while also enhancing the sensitivity of the probe. The use enzyme-like nanomaterials in microfluidic systems can offer portable strategies for real-time and reliable detection of biological agents. Colorimetry and electrochemical methods are commonly utilized in the fabrication of nanozyme-based microfluidic systems. The review summarizes recent developments in enzyme-mimicking materials-integrated microfluidic analytical methods in biomedical analysis and discusses the current challenges, advantages, and potential future directions.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Nanoestruturas , Microfluídica/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Miniaturização , Técnicas Biossensoriais/métodos , Dispositivos Lab-On-A-Chip
2.
Food Chem ; 413: 135638, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773356

RESUMO

Zinc is an essential metal since it plays an important role in biological systems, therefore, determination of zinc in food samples is important. Violuric acid was used to prepare highly fluorescent carbon dots (CDs), when it irradiated with ultraviolet radiation at 365 nm, a strong violet fluorescence was observed which caused by the increased amount of nitrogen in the CD structure, which were then successfully used for sensing zinc ion based on quenching of fluorescence. Violuric acid's hydrothermal carbonization reaction's temperature and time were simply optimized for better-quality performance of the CDs as-synthesized. The probe was characterized by HRTEM, SEM, XRD, EDX, fluorescence, UV-Visible absorption spectrophotometry, and FTIR. With a lower LOD 0.32 nM, the developed approach demonstrates an exceptional sensitivity and good selective response to the Zn2+ at 25℃. Compared to the results from ICP, the sensor was successfully used for determination of Zn2+ ions in tomato paste samples.


Assuntos
Pontos Quânticos , Solanum lycopersicum , Raios Ultravioleta , Corantes Fluorescentes/química , Carbono/química , Espectrometria de Fluorescência , Zinco/química , Pontos Quânticos/química
3.
Crit Rev Anal Chem ; : 1-18, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728973

RESUMO

Pesticides have an important role in rising the overall productivity and yield of agricultural foods by eliminating and controlling insects, pests, fungi, and various plant-related illnesses. However, the overuse of pesticides has caused pesticide pollution of water bodies and food products, along with disruption of environmental and ecological systems. In this regard, developing low-cost, simple, and rapid-detecting approaches for the accurate, rapid, efficient, and on-site screening of pesticide residues is an ongoing challenge. Electrochemiluminescence (ECL) possesses the benefits of great sensitivity, the capability to resolve several analytes using different emission wavelengths or redox potentials, and excellent control over the light radiation in time and space, making it a powerful strategy for sensing various pesticides. Cost-effective and simple ECL systems allow sensitive, selective, and accurate quantification of pesticides in agricultural fields. Particularly, the development and progress of nanomaterials, aptamer/antibody recognition, electric/photo-sensing, and their integration with electrochemiluminescence sensing technology has presented the hopeful potential in reporting the residual amounts of pesticides. Current trends in the application of nanoparticles are debated, with an emphasis on sensor substrates using aptamer, antibodies, enzymes, and molecularly imprinted polymers (MIPs). Different strategies are enclosed in labeled and label-free sensing along with luminescence determination approaches (signal-off, signal-on, and signal-switch modes). Finally, the recent challenges and upcoming prospects in this ground are also put forward.

4.
Crit Rev Anal Chem ; : 1-18, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917532

RESUMO

Sensitive and rapid determination of foodborne pathogenic bacteria is of practical importance for the control and prevention of foodborne illnesses. Nowadays, with the prosperous development of fluorescence assays, fluorescence resonance energy transfer (FRET)-derived diagnostic strategies are extensively employed in quantitative analysis of different pathogenic bacteria in food-related matrices, which displays a rapid, simple, stable, reliable, cost-effective, selective, sensitive, and real-time way. Considering the extensive efforts that have been made in this field so far, we here discuss the up-to-date developments of FRET-based diagnostic approaches for the determination of key foodborne pathogens like Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Salmonella spp., Campylobacter spp., and Bacillus cereus in complex food-related matrices. Moreover, the principle of this technology, the choosing standards of acceptor-donor pairs, and the fluorescence properties are also profiled. Finally, the current prospects and challenges in this field are also put forward.

5.
J Food Prot ; 86(7): 100102, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172905

RESUMO

In this study, an eco-friendly procedure was established by vortex-assisted liquid-phase microextraction based on deep eutectic solvent (VA-LPME-DES) combined with graphite furnace atomic absorption spectroscopy (GFAAS). The performance of this method was demonstrated by the extraction and analysis of lead (Pb), cadmium (Cd), and mercury (Hg) in fish samples. The hydrophobic DES is considered as a green extractant (environmentally friendly and less toxic than common organic solvents) and is a suitable alternative to common toxic organic solvents and is made of l-menthol and ethylene glycol (EG) with a molar ratio of 1:1. Under optimized conditions, the method linearity was in the ranges of 0.15-150 µg kg-1 with the coefficient of determinations (r2) higher than 0.996. Accordingly, the detection limits for Pb, Cd, and Hg were 0.05, 0.05, and 0.10 µg kg-1, respectively. The analysis of fish samples showed that the concentration of toxic elements in fish caught from the Tigris and Euphrates Rivers is much higher than the concentration of these elements in locally farmed trout fish. Also, the analysis of fish-certified reference materials with presented procedure produced results that were in good agreement with the certified values. The results showed that VA-LPME-DES is a very cheap, fast, and environmental-friendly procedure for the analysis of toxic elements in different types of fish species.


Assuntos
Microextração em Fase Líquida , Mercúrio , Animais , Solventes/análise , Solventes Eutéticos Profundos , Cádmio/análise , Iraque , Chumbo/análise , Mercúrio/análise , Microextração em Fase Líquida/métodos , Peixes , Limite de Detecção
6.
Crit Rev Anal Chem ; : 1-19, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598426

RESUMO

Smartphone-derived colorimetric tools have the potential to revolutionize food safety control by enabling citizens to carry out monitoring assays. To realize this, it is of paramount significance to recognize recent study efforts and figure out important technology gaps in terms of food security. Driven by international connectivity and the extensive distribution of smartphones, along with their built-in probes and powerful computing abilities, smartphone-based sensors have shown enormous potential as cost-effective and portable diagnostic scaffolds for point-of-need tests. Meantime, the colorimetric technique is of particular notice because of its benefits of rapidity, simplicity, and high universality. In this study, we tried to outline various colorimetric platforms using smartphone technology, elucidate their principles, and explore their applications in detecting target analytes (pesticide residues, antibiotic residues, metal ions, pathogenic bacteria, toxins, and mycotoxins) considering their sensitivity and multiplexing capability. Challenges and desired future perspectives for cost-effective, accurate, reliable, and multi-functions smartphone-based colorimetric tools have also been debated.

7.
Crit Rev Anal Chem ; : 1-17, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36580293

RESUMO

Food safety issue is becoming an international challenge for human health owing to the presence of contaminants. In this context, reliable, rapid, and sensitive detecting technology is extremely demanded to establish food safety assurance systems. MOFs (Metal-organic frameworks) are a new type of porous crystalline material with particular physical and chemical characteristics presented in food safety requirements. (Bio)sensors driven MOF materials have emerged as a promising alternative and complementary analytical techniques, owing to their great specific area, high porosity, and uniform and fine-tunable pore buildings. Nevertheless, the insufficient stability and electrical conductivity of classical MOFs limit their utilization. Employing graphene-derived nanomaterials with high functional elements as patterns for the MOF materials not only improves the structural instability and poor conductivity but also impedes the restacking and aggregation between graphene layers, thus significantly extending the MOFs application. A review of MOFs-graphene-based material used in food contamination detection is urgently needed for encouraging the advance of this field. Herein, this paper systematically outlines current breakthroughs in MOF-graphene-based nanoprobes, outlines their principles, and illustrates their employments in identifying mycotoxins, heavy metal ions, pathogens, antibiotics, and pesticides, referring to their multiplexing and sensitivity ability. The challenges and limitations of applying MOF-graphene composite for precise and efficient assessment of food were also debated. This paper would maybe offer some inspired concepts for an upcoming study on MOF-based composites in the food security context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA