Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Radiol Prot ; 40(3): R99-R140, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32031989

RESUMO

The radiation doses from natural radiation sources in Japan are reviewed using the latest knowledge. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) and the Nuclear Safety Research Association report the annual effective doses from cosmic rays, terrestrial radiation, inhalation, and ingestion as natural sources. In this paper, the total annual effective dose from cosmic-ray exposure is evaluated as 0.29 mSv. The arithmetic mean of the annual effective dose from external exposure to terrestrial radiation is 0.33 mSv for the Japanese population using the data of nationwide surveys by the National Institute of Radiological Sciences. Previously in Japan, although three different groups have conducted nationwide indoor radon surveys using passive-type radon monitors, to date only the Japan Chemical Analysis Center (JCAC) has performed a nationwide radon survey using a unified method for radon measurements conducted indoor, outdoor, and in the workplace. Consequently, the JCAC results are used for the annual effective dose from radon and that for radon inhalation is estimated as 0.50 mSv using a current dose conversion factor. In this paper, UNSCEAR values are used for the mean indoor and outdoor thoron-progeny concentrations, and the annual effective dose from thoron is reported as 0.09 mSv. Thus, the annual effective dose from radon and thoron inhalation is 0.59 mSv. From a JCAC large-scale survey of foodstuffs, the committed effective dose from the main radionuclides in dietary intake is 0.99 mSv. Finally, the Japanese population dose from natural radiation is given as 2.2 mSv, which is similar to the reported global average of 2.4 mSv.


Assuntos
Radiação de Fundo , Doses de Radiação , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Radiação Cósmica , Exposição Ambiental/análise , Contaminação Radioativa de Alimentos/análise , Humanos , Exposição por Inalação/análise , Japão , Exposição à Radiação/análise , Radônio/análise
2.
Radiat Prot Dosimetry ; 199(18): 2203-2206, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37935002

RESUMO

Portable-type electrostatic-collection radon monitors (RAD7) are often used for in-situ measurements of radon in water. In this study, we evaluated the calibration factors and their uncertainties for two RAD7 monitors based on comparative measurements with the liquid scintillation counting method. In the first experiment, we found that both RAD7 monitors had relatively large uncertainties due to leakage of radon gas that bubbled from the gaps between the lids of the desiccant container and the glass vial. Therefore, for the second experiment, these gaps were closed as much as possible using parafilm and clay, respectively. As a result, the relative uncertainties for both RAD7 monitors were significantly decreased. Furthermore, we collected spring water samples to confirm the reliability of radon concentrations. After closing the leakage point, the uncertainty of radon concentrations in spring water we measured using the typical protocol of the RAD7 were significantly lower, which improves the measurement.


Assuntos
Água Potável , Monitoramento de Radiação , Radônio , Radônio/análise , Calibragem , Eletricidade Estática , Reprodutibilidade dos Testes , Monitoramento de Radiação/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-35162781

RESUMO

222Rn and 226Ra concentrations of less than a few to several thousands of Bq L-1 have been observed in several underground bodies of water around the world. Although regulations for these concentrations in water have been implemented internationally, there are currently no regulations in place in Japan. However, concentrations that exceed these internationally recognized regulatory values have also been observed in Japan. In this study, concentrations in spring water in the northern part of Japan were measured and the effective dose from intake of the water was evaluated. 222Rn concentrations were measured using a liquid scintillation counter, and 226Ra concentrations were measured using a high purity germanium detector after chemical preparation. The measured 222Rn concentrations (=12.7 ± 6.1 Bq L-1) and 226Ra concentrations (<0.019-0.022 Bq L-1) did not exceed the reference values set by international and European/American organizations. A conservative estimate of the annual effective ingestion dose of 8 µSv for 222Rn and 226Ra obtained in this study is much smaller than the estimated overall annual effective dose of 2.2 mSv from natural radiation to the Japanese population. However, this dosage accounts for 8% of the WHO individual dosing criteria of 0.1 mSv/year for drinking water.


Assuntos
Água Potável , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Radiação de Fundo , Água Potável/análise , Ingestão de Alimentos , Doses de Radiação , Radônio/análise , Poluentes Radioativos da Água/análise , Abastecimento de Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-33535545

RESUMO

As part of a nationwide survey of thoron (220Rn) in Japan, the indoor 220Rn gas concentrations in 940 dwellings were measured throughout one year, from 1993 to 1996, using a passive type 222Rn-220Rn discriminative monitor. The monitor was placed in a bedroom or a living room in each house for four successive three-month periods. The mean annual indoor 220Rn concentration was estimated from the four measurements in each house. The arithmetic mean, the median and the geometric mean for indoor 220Rn concentrations in 899 dwellings were 20.1, 9.6 and 10.0 Bq m-3, respectively. The 220Rn concentrations exhibited a log-normal distribution. It was found that the 220Rn concentrations were dependent on the nature of the materials used for wall construction and also on the distance of measurement from the wall. Significant seasonal variations in the 220Rn concentration were not observed. It would seem that the nature of the wall material contributed to the increased indoor 220Rn concentrations.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Habitação , Japão , Radônio/análise , Produtos de Decaimento de Radônio/análise
5.
Sci Total Environ ; 750: 142346, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182182

RESUMO

The biological effects of low dose-rate radiation exposures on humans remains unknown. In fact, the Japanese nation still struggles with this issue after the Fukushima Dai-ichi Nuclear Power Plant accident. Recently, we have found a unique area in Indonesia where naturally high radiation levels are present, resulting in chronic low dose-rate radiation exposures. We aimed to estimate the comprehensive dose due to internal and external exposures at the particularly high natural radiation area, and to discuss the enhancement mechanism of radon. A car-borne survey was conducted to estimate the external doses from terrestrial radiation. Indoor radon measurements were made in 47 dwellings over three to five months, covering the two typical seasons, to estimate the internal doses. Atmospheric radon gases were simultaneously collected at several heights to evaluate the vertical distribution. The absorbed dose rates in air in the study area vary widely between 50 nGy h-1 and 1109 nGy h-1. Indoor radon concentrations ranged from 124 Bq m-3 to 1015 Bq m-3. That is, the indoor radon concentrations measured exceed the reference levels of 100 Bq m-3 recommended by the World Health Organization. Furthermore, the outdoor radon concentrations measured were comparable to the high indoor radon concentrations. The annual effective dose due to external and internal exposures in the study area was estimated to be 27 mSv using the median values. It was found that many residents are receiving radiation exposure from natural radionuclides over the dose limit for occupational exposure to radiation workers. This enhanced outdoor radon concentration might be as a result of the stable atmospheric conditions generated at an exceptionally low altitude. Our findings suggest that this area provides a unique opportunity to conduct an epidemiological study related to health effects due to chronic low dose-rate radiation exposure.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Radiação de Fundo , Humanos , Indonésia , Doses de Radiação , Radônio/análise
6.
J Environ Radioact ; 87(3): 239-45, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16460847

RESUMO

Radon ((222)Rn) concentration was measured at indoor workplaces in Japan to estimate effective dose to the public from (222)Rn and its progeny. Measurements were made from 2000 to 2003 at 705 sites in four categories of office, factory, school and hospital. Passive type Rn monitors equipped with two sheets of polycarbonate thin films for measuring radon concentrations were installed at observation sites and replaced every 3 months to observe seasonal variations in (222)Rn concentrations. The range of annual mean (222)Rn concentrations for all sites was 1.4-182 Bq m(-3), with the arithmetic mean and standard deviation were 20.8 and 19.5 Bq m(-3). Annual mean (222)Rn concentration observed at office, factory, school and hospital were 22.6, 10.1, 28.4 and 19.8 Bq m(-3), respectively. Seasonal variations in (222)Rn concentrations at offices, schools and hospitals were similar to those found in dwellings, and variations in factories were similar to those found in outdoor environments. (222)Rn concentration observed in every quarter period was found to decrease as follows: school>office>hospital>factory. The average effective dose to the public due to (222)Rn was estimated to be 0.41 mSv y(-1) weighted by the working population. Considering the (222)Rn exposure in indoor workplaces, effective dose to the general public is estimated to be in the range from approximately 0.42 to 0.52 mSv y(-1).


Assuntos
Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Coleta de Dados , Radônio/análise , Humanos , Japão , Doses de Radiação , Radiometria , Estações do Ano , Local de Trabalho
7.
J Environ Radioact ; 146: 110-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25973540

RESUMO

Anomalous atmospheric variations in radon related to earthquakes have been observed in hourly exhaust-monitoring data from radioisotope institutes in Japan. The extraction of seismic anomalous radon variations would be greatly aided by understanding the normal pattern of variation in radon concentrations. Using atmospheric daily minimum radon concentration data from five sampling sites, we show that a sinusoidal regression curve can be fitted to the data. In addition, we identify areas where the atmospheric radon variation is significantly affected by the variation in atmospheric turbulence and the onshore-offshore pattern of Asian monsoons. Furthermore, by comparing the sinusoidal regression curve for the normal annual (seasonal) variations at the five sites to the sinusoidal regression curve for a previously published dataset of radon values at the five Japanese prefectures, we can estimate the normal annual variation pattern. By fitting sinusoidal regression curves to the previously published dataset containing sites in all Japanese prefectures, we find that 72% of the Japanese prefectures satisfy the requirements of the sinusoidal regression curve pattern. Using the normal annual variation pattern of atmospheric daily minimum radon concentration data, these prefectures are suitable areas for obtaining anomalous radon variations related to earthquakes.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação , Radônio/análise , Terremotos , Japão , Modelos Teóricos , Estações do Ano
8.
J Environ Radioact ; 65(2): 203-13, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12527236

RESUMO

Nationwide outdoor radon (222Rn) concentrations in Japan were measured to survey the environmental outdoor 222Rn level and to estimate the effective dose to the general public from 222Rn and its progeny. The 222Rn concentration was measured with a passive-type radon monitor. The 222Rn monitors were installed at about 700 points throughout Japan from 1997 to 1999. The annual mean 222Rn concentration in Japan was estimated from four quarters measurements of 47 prefectures in Japan. Nationwide outdoor mean 222Rn concentration was 6.1 Bq m(-3). This was about 40% of the indoor 222Rn concentration in Japan. The 222Rn concentration in Japan ranged from 3.3 Bq m(-3) in the Okinawa region to 9.8 Bq m(-3) in the Chugoku region, reflecting geological characteristics. Seasonal variation of outdoor 222Rn concentration was also found to be lowest in July to September, and highest in October to December. From the results of this 222Rn survey and previous indoor 222Rn survey program, the effective dose to the general public from 222Rn and its progeny was estimated to be 0.45 mSv y(-1).


Assuntos
Exposição Ambiental , Poluentes Radioativos/análise , Radônio/análise , Coleta de Dados , Monitoramento Ambiental , Fenômenos Geológicos , Geologia , Humanos , Japão , Saúde Pública , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA