Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 15(8): e1805394, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30698912

RESUMO

The transparent oxide semiconductor (TOS) with large bandgap (Eg ≈ 4 eV) based thin-film transistors (TFTs) showing both high carrier mobility and UV-visible transparency has attracted increasing attention as a promising component for next generation optoelectronics. Among TOSs, BaSnO3 -SrSnO3 solid-solutions (Eg = 3.5-4.2 eV) are good candidates because the single crystal shows very high mobility. However, the TFT performance has not been optimized due to the lack of fundamental knowledge especially the effective thickness (teff ) and the carrier effective mass (m*). Here, it is demonstrated that the electric field thermopower (S) modulation method addresses this problem by combining with the standard volume carrier concentration (n3D ) dependence of S measurements. By comparing the electric field accumulated sheet carrier concentration (n2D ) and n3D at same S, it is clarified that the teff (n2D /n3D ) of the conducting channel becomes thicker with increasing Sr concentration, whereas the m* becomes lighter. The former would be due to the increase of Eg and latter would be due to the enhancement of overlap population of neighboring Sn 5s orbitals. The present analyses technique is useful to experimentally clarify the teff and m*, and essentially important to realize advanced TOS-based TFTs showing both high optical transparency and high mobility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA