Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 75(2): 263-308, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549866

RESUMO

Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.


Assuntos
Produtos Biológicos , COVID-19 , Animais , Organofosfatos/farmacologia , SARS-CoV-2 , Proteínas Amiloidogênicas , Mamíferos
2.
Proc Natl Acad Sci U S A ; 119(14): e2113520119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349341

RESUMO

SignificanceClassic serine proteases are synthesized as inactive precursors that are proteolytically processed, resulting in irreversible activation. We report an alternative and reversible mechanism of activation that is executed by an inactive protease. This mechanism involves a protein complex between the serine protease HTRA1 and the cysteine protease calpain 2. Surprisingly, activation is restricted as it improves the proteolysis of soluble tau protein but not the dissociation and degradation of its amyloid fibrils, a task that free HTRA1 is efficiently performing. These data exemplify a challenge for protein quality control proteases in the clearing of pathogenic fibrils and suggest a potential for unexpected side effects of chemical modulators targeting PDZ or other domains located at a distance to the active site.


Assuntos
Calpaína , Serina Endopeptidases , Amiloide/metabolismo , Calpaína/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/química , Proteólise , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo
3.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198527

RESUMO

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , Peptídeos , Amiloide/química , Antibacterianos/farmacologia , Hemoglobinas
4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750269

RESUMO

Antibiotic resistance is a major threat to global health; this problem can be addressed by the development of new antibacterial agents to keep pace with the evolutionary adaptation of pathogens. Computational approaches are essential tools to this end since their application enables fast and early strategical decisions in the drug development process. We present a rational design approach, in which acylide antibiotics were screened based on computational predictions of solubility, membrane permeability, and binding affinity toward the ribosome. To assess our design strategy, we tested all candidates for in vitro inhibitory activity and then evaluated them in vivo with several antibiotic-resistant strains to determine minimal inhibitory concentrations. The predicted best candidate is synthetically more accessible, exhibits higher solubility and binding affinity to the ribosome, and is up to 56 times more active against resistant pathogens than telithromycin. Notably, the best compounds designed by us show activity, especially when combined with the membrane-weakening drug colistin, against Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli, which are the three most critical targets from the priority list of pathogens of the World Health Organization.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Macrolídeos/farmacologia , Colistina/farmacologia , Testes de Sensibilidade Microbiana/métodos
5.
J Am Chem Soc ; 145(21): 11544-11552, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37207364

RESUMO

A novel surface-confined C-C coupling reaction involving two carbene molecules and a water molecule was studied by scanning tunneling microscopy in real space. Carbene fluorenylidene was generated from diazofluorene in the presence of water on a silver surface. While in the absence of water, fluorenylidene covalently binds to the surface to form a surface metal carbene, and water can effectively compete with the silver surface in reacting with the carbene. Water molecules in direct contact with fluorenylidene protonate the carbene to form the fluorenyl cation before the carbene can bind to the surface. In contrast, the surface metal carbene does not react with water. The fluorenyl cation is highly electrophilic and draws electrons from the metal surface to generate the fluorenyl radical which is mobile on the surface at cryogenic temperatures. The final step in this reaction sequence is the reaction of the radical with a remaining fluorenylidene molecule or with diazofluorene to produce the C-C coupling product. Both a water molecule and the metal surface are essential for the consecutive proton and electron transfer followed by C-C coupling. This C-C coupling reaction is unprecedented in solution chemistry.

6.
J Am Chem Soc ; 145(28): 15251-15264, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37392180

RESUMO

Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.


Assuntos
Lisina , Proteínas Associadas aos Microtúbulos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Lisina/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/química , Microtúbulos/metabolismo
7.
J Med Virol ; 95(1): e28124, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056630

RESUMO

Host cell proteases such as TMPRSS2 are critical determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and pathogenesis. Here, we show that antithrombin (AT), an endogenous serine protease inhibitor regulating coagulation, is a broad-spectrum inhibitor of coronavirus infection. Molecular docking and enzyme activity assays demonstrate that AT binds and inhibits TMPRSS2, a serine protease that primes the Spike proteins of coronaviruses for subsequent fusion. Consequently, AT blocks entry driven by the Spikes of SARS-CoV, MERS-CoV, hCoV-229E, SARS-CoV-2 and its variants of concern including Omicron, and suppresses lung cell infection with genuine SARS-CoV-2. Thus, AT is an endogenous inhibitor of SARS-CoV-2 that may be involved in COVID-19 pathogenesis. We further demonstrate that activation of AT by anticoagulants, such as heparin or fondaparinux, increases the anti-TMPRSS2 and anti-SARS-CoV-2 activity of AT, suggesting that repurposing of native and activated AT for COVID-19 treatment should be explored.


Assuntos
COVID-19 , Humanos , Antitrombinas/farmacologia , Linhagem Celular , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Internalização do Vírus , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Glicoproteína da Espícula de Coronavírus/metabolismo , Serina Endopeptidases/genética
8.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445740

RESUMO

Whooping cough is a severe childhood disease, caused by the bacterium Bordetella pertussis, which releases pertussis toxin (PT) as a major virulence factor. Previously, we identified the human antimicrobial peptides α-defensin-1 and -5 as inhibitors of PT and demonstrated their capacity to inhibit the activity of the PT enzyme subunit PTS1. Here, the underlying mechanism of toxin inhibition was investigated in more detail, which is essential for developing the therapeutic potential of these peptides. Flow cytometry and immunocytochemistry revealed that α-defensin-5 strongly reduced PT binding to, and uptake into cells, whereas α-defensin-1 caused only a mild reduction. Conversely, α-defensin-1, but not α-defensin-5 was taken up into different cell lines and interacted with PTS1 inside cells, based on proximity ligation assay. In-silico modeling revealed specific interaction interfaces for α-defensin-1 with PTS1 and vice versa, unlike α-defensin-5. Dot blot experiments showed that α-defensin-1 binds to PTS1 and even stronger to its substrate protein Gαi in vitro. NADase activity of PTS1 in vitro was not inhibited by α-defensin-1 in the absence of Gαi. Taken together, these results suggest that α-defensin-1 inhibits PT mainly by inhibiting enzyme activity of PTS1, whereas α-defensin-5 mainly inhibits cellular uptake of PT. These findings will pave the way for optimization of α-defensins as novel therapeutics against whooping cough.


Assuntos
Coqueluche , Humanos , Criança , Toxina Pertussis/farmacologia , Coqueluche/microbiologia , Bordetella pertussis , Proteínas , Linhagem Celular
9.
J Proteome Res ; 21(8): 1829-1841, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35654412

RESUMO

Virtual screening of protein-protein and protein-peptide interactions is a challenging task that directly impacts the processes of hit identification and hit-to-lead optimization in drug design projects involving peptide-based pharmaceuticals. Although several screening tools designed to predict the binding affinity of protein-protein complexes have been proposed, methods specifically developed to predict protein-peptide binding affinity are comparatively scarce. Frequently, predictors trained to score the affinity of small molecules are used for peptides indistinctively, despite the larger complexity and heterogeneity of interactions rendered by peptide binders. To address this issue, we introduce PPI-Affinity, a tool that leverages support vector machine (SVM) predictors of binding affinity to screen datasets of protein-protein and protein-peptide complexes, as well as to generate and rank mutants of a given structure. The performance of the SVM models was assessed on four benchmark datasets, which include protein-protein and protein-peptide binding affinity data. In addition, we evaluated our model on a set of mutants of EPI-X4, an endogenous peptide inhibitor of the chemokine receptor CXCR4, and on complexes of the serine proteases HTRA1 and HTRA3 with peptides. PPI-Affinity is freely accessible at https://protdcal.zmb.uni-due.de/PPIAffinity.


Assuntos
Peptídeos , Proteínas , Desenho de Fármacos , Peptídeos/química , Ligação Proteica , Proteínas/metabolismo , Máquina de Vetores de Suporte
10.
Chembiochem ; 23(5): e202100618, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043526

RESUMO

Targeting specific protein binding sites to interfere with protein-protein interactions (PPIs) is crucial for the rational modulation of biologically relevant processes. Survivin, which is highly overexpressed in most cancer cells and considered to be a key player of carcinogenesis, features two functionally relevant binding sites. Here, we demonstrate selective disruption of the Survivin/Histone H3 or the Survivin/Crm1 interaction using a supramolecular approach. By rational design we identified two structurally related ligands (LNES and LHIS ), capable of selectively inhibiting these PPIs, leading to a reduction in cancer cell proliferation.


Assuntos
Proteínas Inibidoras de Apoptose , Sítios de Ligação , Proliferação de Células , Proteínas Inibidoras de Apoptose/metabolismo , Ligação Proteica , Survivina/química , Survivina/metabolismo
11.
Chembiochem ; 23(21): e202200396, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36083789

RESUMO

Protein misfolding and aggregation are hallmarks of many severe neurodegenerative diseases including Alzheimer's, Parkinson's and Huntington's disease. As a supramolecular ligand that binds to lysine and arginine residues, the molecular tweezer CLR01 was found to modify the aggregation pathway of disease-relevant proteins in vitro and in vivo with beneficial effects on toxicity. However, the molecular mechanisms of how tweezers exert these effects remain mainly unknown, hampering further drug development. Here, we investigate the modulation mechanism of unfolding and aggregation pathways of SOD1, which are involved in amyotrophic lateral sclerosis (ALS), by CLR01. Using a truncated version of the wildtype SOD1 protein, SOD1bar , we show that CLR01 acts on the first step of the aggregation pathway, the unfolding of the SOD1 monomer. CLR01 increases, by ∼10 °C, the melting temperatures of the A4V and G41D SOD1 mutants, which are commonly observed mutations in familial ALS. Molecular dynamics simulations and binding free energy calculations as well as native mass spectrometry and mutational studies allowed us to identify K61 and K92 as binding sites for the tweezers to mediate the stability increase. The data suggest that the modulation of SOD1 conformational stability is a promising target for future developments of supramolecular ligands against neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase/metabolismo , Dobramento de Proteína , Mutação
12.
Bioconjug Chem ; 33(4): 594-607, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35293739

RESUMO

Peptides are prime drug candidates due to their high specificity of action but are disadvantaged by low proteolytic stability. Here, we focus on the development of stabilized analogues of EPI-X4, an endogenous peptide antagonist of CXCR4. We synthesized macromolecular peptide conjugates and performed side-by-side comparison with their albumin-binding counterparts and considered monovalent conjugates, divalent telechelic conjugates, and Y-shaped peptide dimers. All constructs were tested for competition with the CXCR4 antibody-receptor engagement, inhibition of receptor activation, and inhibition of the CXCR4-tropic human immunodeficiency virus infection. We found that the Y-shaped conjugates were more potent than the parent peptide and at the same time more stable in human plasma, with a favorable outlook for translational studies.


Assuntos
Infecções por HIV , HIV-1 , Dimerização , HIV-1/fisiologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Receptores CXCR4/metabolismo , Transdução de Sinais
13.
J Org Chem ; 87(3): 1669-1678, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34706196

RESUMO

Lipases are ubiquitously used in chemo-enzymatic synthesis and industrial applications. Nevertheless, the modulation of the activity of lipases by organic solvents still is not fully understood at the molecular level. We systematically investigated the activity and structure of lipase A from Bacillus subtilis in binary water-organic solvent mixtures of dimethyl sulfoxide (DMSO), acetonitrile (ACN), and isopropyl alcohol (IPA) using activity assays, fluorescence spectroscopy, molecular dynamics (MD) simulations, and FRET/MD analysis. The enzymatic activity strongly depended on the type and amount of organic solvent in the reaction media. Whereas IPA and ACN reduced the activity of the enzyme, small concentrations of DMSO led to lipase activation via an uncompetitive mechanism. DMSO molecules did not directly interfere with the binding of the substrate in the active site, contrary to what is known for other solvents and enzymes. We propose that the His156-Asp133 interaction, the binding of organic molecules to the active site, and the water accessibility of the substrate are key factors modulating the catalytic activity. Furthermore, we rationalized the role of solvent descriptors on the regulation of enzymatic activity in mixtures with low concentrations of the organic molecule, with prospective implications for the optimization of biocatalytic processes via solvent tuning.


Assuntos
Dimetil Sulfóxido , Lipase , Domínio Catalítico , Dimetil Sulfóxido/química , Lipase/química , Estudos Prospectivos , Solventes/química
14.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499357

RESUMO

Advanced derivatives of the Endogenous Peptide Inhibitor of CXCR4 (EPI-X4) have shown therapeutic efficacy upon topical administration in animal models of asthma and dermatitis. Here, we studied the plasma stability of the EPI-X4 lead compounds WSC02 and JM#21, using mass spectrometry to monitor the chemical integrity of the peptides and a functional fluorescence-based assay to determine peptide function in a CXCR4-antibody competition assay. Although mass spectrometry revealed very rapid disappearance of both peptides in human plasma within seconds, the functional assay revealed a significantly higher half-life of 9 min for EPI-X4 WSC02 and 6 min for EPI-X4 JM#21. Further analyses demonstrated that EPI-X4 WSC02 and EPI-X4 JM#21 interact with low molecular weight plasma components and serum albumin. Albumin binding is mediated by the formation of a disulfide bridge between Cys10 in the EPI-X4 peptides and Cys34 in albumin. These covalently linked albumin-peptide complexes have a higher stability in plasma as compared with the non-bound peptides and retain the ability to bind and antagonize CXCR4. Remarkably, chemically synthesized albumin-EPI-X4 conjugates coupled by non-breakable bonds have a drastically increased plasma stability of over 2 h. Thus, covalent coupling of EPI-X4 to albumin in vitro before administration or in vivo post administration may significantly increase the pharmacokinetic properties of this new class of CXCR4 antagonists.


Assuntos
Receptores CXCR4 , Albumina Sérica Humana , Animais , Humanos , Receptores CXCR4/metabolismo , Peptídeos/química , Meia-Vida , Albumina Sérica/metabolismo
15.
Angew Chem Int Ed Engl ; 61(43): e202212245, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36056533

RESUMO

Chirality switching of self-assembled molecular structures is of potential interest for designing functional materials but is restricted by the strong interaction between the embedded molecules. Here, we report on an unusual approach based on reversible chirality changes of self-assembled oligomers using variable-temperature scanning tunneling microscopy supported by quantum mechanical calculations. Six functionalized diazomethanes each self-assemble into chiral wheel-shaped oligomers on Ag(111). At 130 K, a temperature far lower than expected, the oligomers change their chirality even though the molecules reside in an embedded self-assembled structure. Each chirality change is accompanied by a slight center-of-mass shift. We show how the identical activation energies of the two processes result from the interplay of the chirality change with surface diffusion, findings that open the possibility of implementing various functional materials from self-assembled supramolecular structures.

16.
J Am Chem Soc ; 143(12): 4653-4660, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33599124

RESUMO

Metal carbenes are key intermediates in a plethora of homogeneous and heterogeneous catalytic processes. However, despite their importance to heterogeneous catalysis, the influence of surface attachment on carbene reactivity has not yet been explored. Here, we reveal the interactions of fluorenylidene (FY), an archetypical aromatic carbene of extreme reactivity, with a Ag(111) surface. For the first time, the interaction of a highly reactive carbene with a metal surface could be studied by scanning tunneling microscopy (STM). FY chemisorbs on Ag(111) with an estimated desorption energy of 3 eV, forming a surface bound silver-carbene complex. The surface interaction leads to a switching of the electronic ground state of FY from triplet to singlet, and to controlled chemical reactivity. This atomistic understanding of the interplay between carbenes and metal surfaces opens the way for the development of novel classes of catalytic systems based on surface metal carbenes.

17.
Chemistry ; 27(71): 17873-17879, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34346532

RESUMO

o-Tolylmethylene 1 is a metastable triplet carbene that rearranges to o-xylylene 2 even at temperatures as low as 2.7 K via [1,4] H atom tunneling. Electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopical techniques were used to identify two conformers of 1 (anti and syn) in noble gas matrices and in frozen organic solutions. Conformer-specific kinetic measurements revealed that the rate constants for the rearrangements of the anti and syn conformers of 1 are very similar. However, the orbital alignment in the syn conformer is less favorable for the hydrogen transfer reaction than the orbital configuration in the anti conformer. Our spectroscopic and quantum chemical investigations indicate that anti 1 and syn 1 rapidly interconvert via efficient quantum tunneling forming a rotational pre-equilibrium. The subsequent second tunneling reaction, the [1,4] H migration from anti 1 to 2, is rate-limiting for the formation of 2. We here present an efficient strategy for the study of such tunneling equilibria.


Assuntos
Hidrogênio , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Temperatura
18.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32926779

RESUMO

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Proteínas do Envelope Viral/efeitos dos fármacos , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Amiloide/antagonistas & inibidores , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Arginina/química , Betacoronavirus/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/química , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Lipídeos/química , Lisina/química , Espectroscopia de Ressonância Magnética , Organofosfatos/química , SARS-CoV-2 , Proteínas Secretadas pela Vesícula Seminal/química , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo , Zika virus/efeitos dos fármacos
19.
Chemistry ; 26(46): 10366, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32776594

RESUMO

Invited for the cover of this issue are the groups of Elsa Sanchez-Garcia and Wolfram Sander at the Universität Duisburg-Essen and the Ruhr-Universität Bochum. The image depicts the ideas skillfully visualized by Markus Henkel on the shift in equilibrium induced by isotopic labelling. Read the full text of the article at 10.1002/chem.202001202.

20.
Chemistry ; 26(46): 10452-10458, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32293763

RESUMO

The Cope rearrangement of selectively deuterated isotopomers of 1,5-dimethylsemibullvalene 2 a and 3,7-dicyano-1,5-dimethylsemibullvalene 2 b were studied in cryogenic matrices. In both semibullvalenes the Cope rearrangement is governed by heavy-atom tunneling. The driving force for the rearrangements is the small difference in the zero-point vibrational energies of the isotopomers. To evaluate the effect of the driving force on the tunneling probability in 2 a and 2 b, two different pairs of isotopomers were studied for each of the semibullvalenes. The reaction rates for the rearrangement of 2 b in cryogenic matrices were found to be smaller than the ones of 2 a under similar conditions, whereas differences in the driving force do not influence the rates. Small curvature tunneling (SCT) calculations suggest that the reduced tunneling rate of 2 b compared to that of 2 a results from a change in the shape of the potential energy barrier. The tunneling probability of the semibullvalenes strongly depends on the matrix environment; however, for 2 a in a qualitatively different way than for 2 b.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA