Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; : e13040, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961716

RESUMO

Zebrafish (Danio rerio) is now the second most used animal model in biomedical research. As with other vertebrate models, underlying diseases and infections often impact research. Beyond mortality and morbidity, these conditions can compromise research end points by producing nonprotocol induced variation within experiments. Pseudoloma neurophilia, a microsporidium that targets the central nervous system, is the most frequently diagnosed pathogen in zebrafish facilities. The parasite undergoes direct, horizontal transmission within populations, and is also maternally transmitted with spores in ovarian fluid and occasionally within eggs. This transmission explains the wide distribution among research laboratories as new lines are generally introduced as embryos. The infection is chronic, and fish apparently never recover following the initial infection. However, most fish do not exhibit outward clinical signs. Histologically, the parasite occurs as aggregates of spores throughout the midbrain and spinal cord and extends to nerve roots. It often elicits meninxitis, myositis, and myodegeneration when it infects the muscle. There are currently no described therapies for the parasite, thus the infection is best avoided by screening with PCR-based tests and removal of infected fish from a facility. Examples of research impacts include reduced fecundity, behavioral changes, transcriptome alterations, and autofluorescent lesions.

2.
Aquaculture ; 5642023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38562455

RESUMO

Environmental DNA (eDNA) water assays are beginning to be implemented for many important pathogens in confined aquaculture systems. Recirculating systems are rapidly being developed for fin fish aquaculture. Zebrafish (Danio rerio) are reared in these systems, and Pseudoloma neurophilia (Microsporidia) represents a serious challenge for zebrafish research facilities. Diagnosis of the pathogen has traditionally used histology or PCR of tissues with lethal sampling. However, with the development of a nonlethal assay to detect P. neurophilia in tank water, facilities will be able to integrate the assay into routine surveillance efforts to couple with their established protocols. Here, we first describe a modified protocol to extract and quantify parasite DNA from the environment for nonlethal detection of P. neurophilia in adult zebrafish populations. Using this modified assay, we then evaluated water samples from a longitudinal experimental infection study, targeting timepoints during initial infection. The parasite was detectable in the water immediately after initial exposure until week 4 post exposure (pe), when the parasite was undetectable until 7 weeks pe. After that time, the parasite was sporadically detected in the water for the 10-month study, likely correlating with the lifecycle of the parasite. Using water samples from the Zebrafish International Resource Center, we also validated the clinical relevance of the assay in a large zebrafish facility. The integration of this assay at ZIRC will significantly compliment surveillance and control efforts for the microsporidian parasite.

3.
AJPM Focus ; 3(2): 100198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379957

RESUMO

Community surveillance surveys offer an opportunity to obtain important and timely public health information that may help local municipalities guide their response to public health threats. The objective of this paper is to present approaches, challenges, and solutions from SARS-CoV-2 surveillance surveys conducted in different settings by 2 research teams. For rapid assessment of a representative sample, a 2-stage cluster sampling design was developed by an interdisciplinary team of researchers at Oregon State University between April 2020 and June 2021 across 6 Oregon communities. In 2022, these methods were adapted for New York communities by a team of veterinary, medical, and public health practitioners. Partnerships were established with local medical facilities, health departments, COVID-19 testing sites, and health and public safety staff. Field staff were trained using online modules, field manuals describing survey methods and safety protocols, and in-person meetings with hands-on practice. Private and secure data integration systems and public awareness campaigns were implemented. Pilot surveys and field previews revealed challenges in survey processes that could be addressed before surveys proceeded. Strong leadership, robust trainings, and university-community partnerships proved critical to successful outcomes. Cultivating mutual trust and cooperation among stakeholders is essential to prepare for the next pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA