Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Exp Biol ; 220(Pt 23): 4535-4547, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038311

RESUMO

Ram suspension-feeding fishes swim with an open mouth to force water through the oral cavity and extract prey items that are too small to be pursued individually. Recent research has indicated that, rather than using a dead-end mechanical sieve, American paddlefish (Polyodon spathula) employ vortical cross-step filtration. In this filtration mechanism, vortical flow that is generated posterior to the branchial arches organizes crossflow filtration processes into a spatial structure across the gill rakers. Despite the known impact of locomotor kinematics on fluid flow around the bodies of swimming fish, the effects of locomotor kinematics on filtration mechanisms in ram suspension feeders are unknown. Potential temporal organization of filtration mechanisms in ram suspension-feeding fish has not been studied previously. We investigated the effects of locomotor kinematics associated with undulatory swimming on intra-oral flow patterns and food particle transport. A mechanized model of the oral cavity was used to simulate the swimming kinematics of suspension-feeding paddlefish. We recorded fluctuations of flow speed and pressure within the model, which occurred at a frequency that corresponded with the frequency of the model's strides. Using the mechanized model in a flow tank seeded with Artemia cysts, we also showed that swimming kinematics aided the transport of this simulated food to the posterior margins of the gill slots, although the time scale of this transport is expected to vary with prey parameters such as size and concentration. Dye stream experiments revealed that, although stable vortical flow formed because of flow separation downstream of backward-facing steps in control trials, vortical flow structures in mechanized trials repeatedly formed and shed. These findings suggest strong integration between locomotor and feeding systems in ram suspension-feeding fishes.


Assuntos
Comportamento Alimentar , Peixes/anatomia & histologia , Peixes/fisiologia , Boca/fisiologia , Natação , Animais , Fenômenos Biomecânicos , Filtração , Boca/anatomia & histologia , Impressão Tridimensional
2.
Bioinspir Biomim ; 18(5)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37487501

RESUMO

Ram suspension-feeding fish, such as herring, use gill rakers to separate small food particles from large water volumes while swimming forward with an open mouth. The fish gill raker function was tested using 3D-printed conical models and computational fluid dynamics simulations over a range of slot aspect ratios. Our hypothesis predicting the exit of particles based on mass flow rates, dividing streamlines (i.e. stagnation streamlines) at the slots between gill rakers, and particle size was supported by the results of experiments with physical models in a recirculating flume. Particle movement in suspension-feeding fish gill raker models was consistent with the physical principles of lateral displacement arrays ('bump arrays') for microfluidic and mesofluidic separation of particles by size. Although the particles were smaller than the slots between the rakers, the particles skipped over the vortical region that was generated downstream from each raker. The particles 'bumped' on anterior raker surfaces during posterior transport. Experiments in a recirculating flume demonstrate that the shortest distance between the dividing streamline and the raker surface preceding the slot predicts the maximum radius of a particle that will exit the model by passing through the slot. This theoretical maximum radius is analogous to the critical separation radius identified with reference to the stagnation streamlines in microfluidic and mesofluidic devices that use deterministic lateral displacement and sieve-based lateral displacement. These conclusions provide new perspectives and metrics for analyzing cross-flow and cross-step filtration in fish with applications to filtration engineering.


Assuntos
Comportamento Alimentar , Brânquias , Animais , Biomimética , Peixes , Filtração , Tamanho da Partícula
3.
Bull Math Biol ; 74(4): 981-1000, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22160520

RESUMO

We study crossflow filtration mechanisms in suspension-feeding fishes using computational fluid dynamics to model fluid flow and food particle movement in the vicinity of the gill rakers. During industrial and biological crossflow filtration, particles are retained when they remain suspended in the mainstream flow traveling across the filter surface rather than traveling perpendicularly to the filter. Here we identify physical parameters and hydrodynamic processes that determine food particle movement and retention inside the fish oral cavity. We demonstrate how five variables affect flow patterns and particle trajectories: (1) flow speed inside the fish oral cavity, (2) incident angle of the flow approaching the filter, (3) dimensions of filter structures, (4) particle size, and (5) particle density. Our study indicates that empirical experiments are needed to quantify flow parameters inside the oral cavity, and morphological research is needed to quantify dimensions of the filter apparatus such as gill rakers, the gaps between rakers, and downstream barriers. Ecological studies on suspension-feeding fishes are also needed to quantify food particle size and density, as these variables can affect particle retention due to hydrodynamic processes during crossflow filtration.


Assuntos
Comportamento Alimentar/fisiologia , Brânquias/fisiologia , Boca/fisiologia , Perciformes/fisiologia , Animais , Simulação por Computador , Filtração/veterinária , Brânquias/anatomia & histologia , Hidrodinâmica , Boca/anatomia & histologia , Tamanho da Partícula , Perciformes/anatomia & histologia
4.
J Exp Zool A Ecol Integr Physiol ; 333(7): 493-510, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32342660

RESUMO

To assess potential filtration mechanisms, scanning electron microscopy was used in a comprehensive quantification and analysis of the morphology and surface ultrastructure for all five branchial arches in the ram suspension-feeding fish, American shad (Alosa sapidissima, Clupeidae). The orientation of the branchial arches and the location of mucus cells on the gill rakers were more consistent with mechanisms of crossflow filtration and cross-step filtration rather than conventional dead-end sieving. The long, thin gill rakers could lead to a large area for the exit of water from the oropharyngeal cavity during suspension feeding (high fluid exit ratio). The substantial elongation of gill rakers along the dorsal-ventral axis formed d-type ribs with a groove aspect ratio of 0.5 and a Reynolds number of approximately 500, consistent with the potential operation of cross-step filtration. Mucus cell abundance differed significantly along the length of the raker and the height of the raker. The mucus cell abundance data and the observed sloughing of denticles along the gill raker margins closest to the interior of the oropharyngeal cavity suggest that gill raker growth may occur primarily at the raker tips, the denticle bases, and the internal raker margins along the length of the raker. These findings will be applied in ongoing experiments with 3D-printed physical models of fish oral cavities in flow tanks, and in future ecological studies on the diet and nutrition of suspension-feeding fishes.


Assuntos
Comportamento Alimentar , Peixes/anatomia & histologia , Orofaringe/anatomia & histologia , Animais , Peixes/fisiologia , Brânquias
5.
Bioinspir Biomim ; 14(5): 056008, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31242471

RESUMO

A new filter was developed to collect harmful algae colonies by adapting the cross-step filtration structures and mechanisms discovered recently in filter-feeding fish. Extending beyond previously published models that closely emulated the basic morphology of the fish, the new cross-step filter's major innovations are helical slots, radial symmetry, and rotation as an active anti-clogging mechanism. These innovations enable the transport of concentrated particles to the downstream end of the filter. This advance was made possible by recognizing that biologically imposed constraints such as bilateral symmetry do not apply to human-made filters. The use of helical slots was developed in a series of iterative tests that used water-tracing dye and algae-sized microspheres. The major products of the iterative tests were refinements in the helical design and an understanding of how varying the major structural parameters qualitatively influenced fluid flow and filter performance. Following the iterative tests, the clogging behavior of select filters was quantified at high particle concentrations. Vortices in the helical filter were effective at reducing clogging in the center of the slots. By considering the design space that is free of the biological constraints on the system and exploring the effects of variations in major structural parameters, our work has identified promising new directions for cross-step filtration and provided key insights into the biological system.


Assuntos
Materiais Biomiméticos/química , Eutrofização/fisiologia , Peixes/anatomia & histologia , Animais , Rotação
6.
Biol Bull ; 215(3): 309-18, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19098151

RESUMO

Oreochromis aureus, a species of tilapia, is a suspension-feeding fish that employs a pumping action to bring water into its mouth for filtering.To address questions about water flow inside the mouth, we used a microthermistor flow probe to determine the speed of intra-oral flow during suspension feeding in this species before and after surgical removal of gill rakers. Synchronization with high-speed external videotapes of the fish and high-speed video endoscopy inside the oropharyngeal cavity allowed the first correlation of oral actions with intra-oral flow patterns and speeds during feeding. This analysis established the occurrence of a brief reversal of flow ( approximately 80-ms duration) from posterior to anterior in the oropharyngeal cavity prior to every feeding pump (250-500-ms duration). In industrial crossflow filtration, oscillating or pulsatile flow increases filtration performance by enhancing the back-migration of particles from the region near the filter surface to the bulk flow region, thus reducing particle accumulation that can clog the filter. In endoscopic videotapes, these pre-pump reversals, as well as post-pump reversals ( approximately 500-ms duration), were observed to lift mucus and particles from the branchial arches for subsequent transport toward the esophagus. Intra-oral flow speeds were reduced markedly after removal of the gill rakers. We hypothesize that the decrease in crossflow speed during feeding pumps following the removal of gill rakers and mucus could be due to increased loss of water between the anterior branchial arches.


Assuntos
Comportamento Alimentar/fisiologia , Brânquias/fisiologia , Fluxo Pulsátil/fisiologia , Tilápia/fisiologia , Animais , Boca/fisiologia
7.
PLoS One ; 13(3): e0193874, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29561890

RESUMO

Vortical cross-step filtration in suspension-feeding fish has been reported recently as a novel mechanism, distinct from other biological and industrial filtration processes. Although crossflow passing over backward-facing steps generates vortices that can suspend, concentrate, and transport particles, the morphological factors affecting this vortical flow have not been identified previously. In our 3D-printed models of the oral cavity for ram suspension-feeding fish, the angle of the backward-facing step with respect to the model's dorsal midline affected vortex parameters significantly, including rotational, tangential, and axial speed. These vortices were comparable to those quantified downstream of the backward-facing steps that were formed by the branchial arches of preserved American paddlefish in a recirculating flow tank. Our data indicate that vortices in cross-step filtration have the characteristics of forced vortices, as the flow of water inside the oral cavity provides the external torque required to sustain forced vortices. Additionally, we quantified a new variable for ram suspension feeding termed the fluid exit ratio. This is defined as the ratio of the total open pore area for water leaving the oral cavity via spaces between branchial arches that are not blocked by gill rakers, divided by the total area for water entering through the gape during ram suspension feeding. Our experiments demonstrated that the fluid exit ratio in preserved paddlefish was a significant predictor of the flow speeds that were quantified anterior of the rostrum, at the gape, directly dorsal of the first ceratobranchial, and in the forced vortex generated by the first ceratobranchial. Physical modeling of vortical cross-step filtration offers future opportunities to explore the complex interactions between structural features of the oral cavity, vortex parameters, motile particle behavior, and particle morphology that determine the suspension, concentration, and transport of particles within the oral cavity of ram suspension-feeding fish.


Assuntos
Comportamento Alimentar/fisiologia , Peixes/fisiologia , Animais , Região Branquial/fisiologia , Filtração/métodos , Brânquias/fisiologia , Boca/fisiologia , Fenômenos Físicos , Estados Unidos
8.
Nat Commun ; 7: 11092, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27023700

RESUMO

Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.


Assuntos
Bioengenharia , Filtração , Carpa Dourada/anatomia & histologia , Boca/anatomia & histologia , Tubarões/anatomia & histologia , Animais , Região Branquial/fisiologia , Comportamento Alimentar , Hidrodinâmica , Modelos Biológicos , Pressão , Costelas
9.
Oecologia ; 84(2): 272-279, 1990 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28312765

RESUMO

The term "specialized" has been used to describe species that possess unique functional attributes and/or a narrow, stereotyped range of attributes, but there are few comparative functional analyses of specialists and generalists. If species with functional morphological specializations are capable of functioning over a broad range, the link between morphology and ecology may be relaxed under certain environmental conditions. In this study, high-speed films of jaw movements during prey capture were compared statistically for three coexisting coral reef fish species in the family Labridae, one trophic specialist and two trophic generalists. The trophic specialist possessed a unique functional feature related to the movement of the hyoid in the floor of the mouth, while the trophic generalists were not observed to possess any functional specializations. All three species showed functional versatility in that they were able to adjust their prey capture mechanism in response to the evasive potential of the prey. The functional versatility of trophic specialists has implications for ecomorphological studies, since species characterized as possessing unique functional or morphological features may demonstrate marked flexibility in ecological variables such as diet or foraging behavior, decreasing the likelihood of identifying correlations between morphology and ecology.

10.
Zoology (Jena) ; 116(6): 348-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24211074

RESUMO

The suspension-feeding cichlids Oreochromis aureus (blue tilapia) and Oreochromis esculentus (ngege tilapia) are able to selectively retain small food particles. The gill rakers and microbranchiospines of these species have been assumed to function as filters. However, surgical removal of these oral structures, which also removed associated mucus, did not significantly affect the total number of 11-200 µm particles ingested by the fish. This result supports the hypothesis that the branchial arch surfaces themselves play an important role in crossflow filtration. Both species selectively retained microspheres greater than 50 µm with gill rakers and microbranchiospines intact as well as removed, demonstrating that neither these structures nor mucus are necessary for size selectivity to occur during biological crossflow filtration. After removal of the gill rakers and microbranchiospines, O. esculentus retained significantly more microspheres 51-70 µm in diameter and fewer 91-130 µm microspheres compared to retention with intact structures, but the particle size selectivity of O. aureus was not affected significantly. These results support conclusions from previous computational fluid dynamics simulations indicating that particle size can have marked effects on particle trajectory and retention inside the fish oropharyngeal cavity during crossflow filtration. The substantial inter-individual variability in particle retention by suspension-feeding fish is an unexplored area of research with the potential to increase our understanding of the factors influencing particle retention during biological filtration.


Assuntos
Região Branquial/anatomia & histologia , Ciclídeos/anatomia & histologia , Ciclídeos/fisiologia , Dieta/veterinária , Tamanho da Partícula , Animais , Região Branquial/cirurgia , Comportamento Alimentar , Filtração , Brânquias/anatomia & histologia , Microscopia Eletrônica de Varredura
11.
J Exp Biol ; 210(Pt 15): 2706-13, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17644685

RESUMO

Filtration mechanisms are known for only two species of suspension-feeding tilapia, each of which relies on a different method of particle retention. We used high-speed video endoscopy to assess whether a third species of tilapia, Oreochromis aureus, with gill rakers intact as well as surgically removed, uses mucus in the oropharyngeal cavity for hydrosol filtration or uses crossflow filtration to retain particles during suspension feeding. Although a large amount of mucus was visible during feeding with rakers intact, particles were rarely retained in the mucus. The hypothesis that the presence of mucus results in particle entrapment by hydrosol filtration is rejected for O. aureus. Rather than functioning as a sticky filter, mucus is proposed to function in this species to regulate the loss of water between the rakers and between the anterior branchial arches, increasing crossflow speed and thereby increasing the inertial lift force that transports particles radially away from the arches. Gill raker removal resulted in an almost complete lack of observable mucus in the oropharyngeal cavity, probably due to the removal of mucus-secreting cells attached to the gill rakers. However, endoscopic videotapes showed that crossflow filtration continued to operate in the absence of gill rakers and mucus, indicating that the surfaces of the branchial arches play an important role in crossflow filtration.


Assuntos
Peixes/fisiologia , Brânquias/fisiologia , Muco/fisiologia , Animais , Endoscopia do Sistema Digestório/veterinária , Comportamento Alimentar , Filtração , Peixes/anatomia & histologia , Brânquias/anatomia & histologia
12.
J Morphol ; 187(2): 143-158, 1986 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29954167

RESUMO

Among the acanthopterygian fishes, the Labridae possess the most highly integrated and specialized pharyngeal jaw apparatus. The integrated feature involves many osteological components and aspects of muscle form, architecture, composition, and function. The upper jaw articulates by means of a true diarthrosis with the pharyngeal process of the parasphenoid, whereas the lower jaw has established physical contact with the cleithrum. Complex muscle fusions have contributed significantly in the development of a double muscle sling operating the lower jaw. The original levator externus 4 fuses with the central head of the obliquus posterior, whereas the original levator posterior combines with the lateral head of the obliquus posterior as well as with the adductor branchialis 5. During the masticatory cycle, both upper and lower jaws undergo complex movement orbits resulting in shearing and crushing functions. Shearing occurs as the forward moving upper jaw collides with the dorsally held lower jaw. Crushing is effected by an extreme posterodorsal movement of the lower jaw against the retracted upper jaw, thereby establishing full occlusion of the teeth. The specialized morphological and functional design of the labrid pharyngeal jaw apparatus is similar to that found in cichlids. In sharp contrast to primitive acanthopterygian fishes, the Labridae and Cichlidae exhibit a spectacular morphological diversity that parallels their ecological diversification. Our combined functional and historical analysis has established a correlation between the complex integration of the pharyngeal jaw apparatus and morphological and ecological diversity in the Labridae and Cichlidae.

13.
J Exp Biol ; 206(Pt 5): 883-92, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12547943

RESUMO

It has been hypothesized that, when engulfing food mixed with inorganic particles during benthic feeding, cyprinid fish use protrusions of tissue from the palatal organ to retain the food particles while the inorganic particles are expelled from the opercular slits. In crossflow filtration, the particle suspension is pumped parallel to the filter surface as filtrate exits through the filter pores, causing the suspension to become more concentrated as it travels downstream along the filter. We used high-speed video endoscopy to determine whether carp Cyprinus carpio use crossflow filtration and/or palatal protrusions during benthic feeding. We found that carp use crossflow filtration to concentrate small food particles in the pharyngeal cavity while expelling small dense inorganic particles through the opercular slits and via spits. Our results suggest that, during feeding on small food particles, palatal protrusions serve a localized chemosensory function rather than a mechanical particle-sorting function. However, palatal protrusions did retain large food particles while large inorganic particles were spit anteriorly from the mouth. We also investigated whether flow is continuous and unidirectional during suspension feeding in carp. As reported previously for ventilation in hedgehog skates and for certain industrial crossflow filtration applications, we observed that flow is pulsatile and bidirectional during feeding. These results have implications for hydrodynamic models of crossflow filtration in suspension-feeding fishes.


Assuntos
Carpas/fisiologia , Comportamento Alimentar/fisiologia , Animais , Fenômenos Biomecânicos , Carpas/anatomia & histologia , Filtração , Faringe/anatomia & histologia , Faringe/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA