Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004147

RESUMO

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Fosfatase 2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Fosforilação , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Especificidade por Substrato
2.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019788

RESUMO

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Assuntos
Biocatálise , Histonas/metabolismo , Oncogenes , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Linhagem Celular , Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Sequência Conservada , Evolução Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilases/metabolismo , Humanos , Cinética , Metilação , Modelos Biológicos , RNA Polimerase II/metabolismo
3.
EMBO J ; 40(20): e107237, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34523147

RESUMO

BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.


Assuntos
Lipossomos/química , Lipídeos de Membrana/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Animais , Sítios de Ligação , Clonagem Molecular , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Lipossomos/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
4.
Nature ; 565(7737): 118-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542156

RESUMO

Plasmodium falciparum causes the severe form of malaria that has high levels of mortality in humans. Blood-stage merozoites of P. falciparum invade erythrocytes, and this requires interactions between multiple ligands from the parasite and receptors in hosts. These interactions include the binding of the Rh5-CyRPA-Ripr complex with the erythrocyte receptor basigin1,2, which is an essential step for entry into human erythrocytes. Here we show that the Rh5-CyRPA-Ripr complex binds the erythrocyte cell line JK-1 significantly better than does Rh5 alone, and that this binding occurs through the insertion of Rh5 and Ripr into host membranes as a complex with high molecular weight. We report a cryo-electron microscopy structure of the Rh5-CyRPA-Ripr complex at subnanometre resolution, which reveals the organization of this essential invasion complex and the mode of interactions between members of the complex, and shows that CyRPA is a critical mediator of complex assembly. Our structure identifies blades 4-6 of the ß-propeller of CyRPA as contact sites for Rh5 and Ripr. The limited contacts between Rh5-CyRPA and CyRPA-Ripr are consistent with the dissociation of Rh5 and Ripr from CyRPA for membrane insertion. A comparision of the crystal structure of Rh5-basigin with the cryo-electron microscopy structure of Rh5-CyRPA-Ripr suggests that Rh5 and Ripr are positioned parallel to the erythrocyte membrane before membrane insertion. This provides information on the function of this complex, and thereby provides insights into invasion by P. falciparum.


Assuntos
Antígenos de Protozoários/ultraestrutura , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Plasmodium falciparum , Proteínas de Protozoários/ultraestrutura , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Drosophila , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitologia , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
5.
J Biol Chem ; 298(12): 102645, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309085

RESUMO

The inflammasome sensor NLRP1 (nucleotide-binding oligomerization domain-like receptor containing a pyrin domain 1) detects a variety of pathogen-derived molecular patterns to induce an inflammatory immune response by triggering pyroptosis and cytokine release. A number of mutations and polymorphisms of NLRP1 are known to cause autoinflammatory diseases, the functional characterization of which contributes to a better understanding of NLRP1 regulation. Here, we assessed the effect of the common NLRP1 variant M1184V, associated with asthma, inflammatory bowel disease, and diabetes, on the protein level. Our size-exclusion chromatography experiments show that M1184V stabilizes the "function-to-find" domain (FIIND) in a monomeric conformation. This effect is independent of autoproteolysis. In addition, molecular dynamics simulations reveal that the methionine residue increases flexibility within the ZU5 domain, whereas valine decreases flexibility, potentially indirectly stabilizing the catalytic triad responsible for autocleavage. By keeping the FIIND domain monomeric, formation of a multimer of full-length NLRP1 is promoted. We found that the stabilizing effect of the valine further leads to improved dipeptidyl peptidase 9 (DPP9)-binding capacities for the FIIND domain as well as the full-length protein as determined by surface plasmon resonance. Moreover, our immunoprecipitation experiments confirmed increased DPP9 binding for the M1184V protein in cells, consistent with improved formation of an autoinhibited complex with DPP9 in activity assays. Collectively, our study establishes a molecular rationale for the dichotomous involvement of the NLRP1 variant M1184V in autoimmune syndromes.


Assuntos
Doenças Autoimunes , Dipeptidil Peptidases e Tripeptidil Peptidases , Inflamassomos , Proteínas NLR , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Proteínas NLR/metabolismo , Humanos , Doenças Autoimunes/metabolismo
6.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30573668

RESUMO

The E3 ubiquitin ligase Parkin is a key effector of the removal of damaged mitochondria by mitophagy. Parkin determines cell fate in response to mitochondrial damage, with its loss promoting early onset Parkinson's disease and potentially also cancer progression. Controlling a cell's apoptotic response is essential to co-ordinate the removal of damaged mitochondria. We report that following mitochondrial damage-induced mitophagy, Parkin directly ubiquitinates the apoptotic effector protein BAK at a conserved lysine in its hydrophobic groove, a region that is crucial for BAK activation by BH3-only proteins and its homo-dimerisation during apoptosis. Ubiquitination inhibited BAK activity by impairing its activation and the formation of lethal BAK oligomers. Parkin also suppresses BAX-mediated apoptosis, but in the absence of BAX ubiquitination suggesting an indirect mechanism. In addition, we find that BAK-dependent mitochondrial outer membrane permeabilisation during apoptosis promotes PINK1-dependent Parkin activation. Hence, we propose that Parkin directly inhibits BAK to suppress errant apoptosis, thereby allowing the effective clearance of damaged mitochondria, but also promotes clearance of apoptotic mitochondria to limit their potential pro-inflammatory effect.


Assuntos
Mitocôndrias/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Camundongos , Mitofagia , Ubiquitinação , Proteína Killer-Antagonista Homóloga a bcl-2/química
7.
Proc Natl Acad Sci U S A ; 117(15): 8468-8475, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32234780

RESUMO

The necroptosis cell death pathway has been implicated in host defense and in the pathology of inflammatory diseases. While phosphorylation of the necroptotic effector pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) by the upstream protein kinase RIPK3 is a hallmark of pathway activation, the precise checkpoints in necroptosis signaling are still unclear. Here we have developed monobodies, synthetic binding proteins, that bind the N-terminal four-helix bundle (4HB) "killer" domain and neighboring first brace helix of human MLKL with nanomolar affinity. When expressed as genetically encoded reagents in cells, these monobodies potently block necroptotic cell death. However, they did not prevent MLKL recruitment to the "necrosome" and phosphorylation by RIPK3, nor the assembly of MLKL into oligomers, but did block MLKL translocation to membranes where activated MLKL normally disrupts membranes to kill cells. An X-ray crystal structure revealed a monobody-binding site centered on the α4 helix of the MLKL 4HB domain, which mutational analyses showed was crucial for reconstitution of necroptosis signaling. These data implicate the α4 helix of its 4HB domain as a crucial site for recruitment of adaptor proteins that mediate membrane translocation, distinct from known phospholipid binding sites.


Assuntos
Materiais Biomiméticos/farmacologia , Membrana Celular/metabolismo , Domínio de Fibronectina Tipo III , Necrose , Oligopeptídeos/farmacologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Cristalografia por Raios X , Humanos , Fosforilação , Conformação Proteica , Proteínas Quinases/química , Multimerização Proteica , Transporte Proteico
8.
Biochem J ; 478(17): 3351-3371, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34431498

RESUMO

EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis. In this study, we have characterised the biochemical properties and topology of the EphB6 and EphA10 intracellular regions comprising the juxtamembrane (JM) region, pseudokinase and SAM domains. Using small-angle X-ray scattering and cross-linking-mass spectrometry, we observed high flexibility within their intracellular regions in solution and a propensity for interaction between the component domains. We identified tyrosine residues in the JM region of EphB6 as EphB4 substrates, which can bind the SH2 domains of signalling effectors, including Abl, Src and Vav3, consistent with cellular roles in recruiting these proteins for downstream signalling. Furthermore, our finding that EphB6 and EphA10 can bind ATP and ATP-competitive small molecules raises the prospect that these pseudokinase domains could be pharmacologically targeted to counter oncogenic signalling.


Assuntos
Receptores da Família Eph/química , Receptores da Família Eph/metabolismo , Transdução de Sinais/genética , Motivo Estéril alfa/genética , Domínios de Homologia de src/genética , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Inibidores de Proteínas Quinases/metabolismo , Receptores da Família Eph/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera/citologia , Tirosina/metabolismo
9.
Proteomics ; 21(11-12): e2000244, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33945654

RESUMO

MARCH proteins are membrane-associated Ring-CH E3 ubiquitin ligases that dampen immune responses by downregulating cell surface expression of major histocompatibility complexes I and II as well as immune co-stimulatory receptors. We recently showed that MARCH2,3,4 and 9 also downregulate cell surface expression of the inflammatory cytokine receptor for interleukin-6 (IL6Rα). Here we use over-expression of these MARCH proteins in the M1 myeloid leukaemia cell line and cell surface proteomic analyses to globally analyse other potential targets of these proteins. A large range of cell surface proteins regulated by more than one MARCH protein in addition to several MARCH protein-specific cell surface targets were identified most of which were downregulated by MARCH expression. Prominent among these were several integrin complexes associated with immune cell homing, adhesion and migration. Integrin α4ß1 (VLA4 or VCAM-1 receptor) was downregulated only by MARCH2 and we showed that in MARCH2 knockout mice, Integrin α4 was upregulated specifically in mature B-lymphocytes and this was accompanied by decreased numbers of B-cells in the spleen.


Assuntos
Integrinas , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases/genética , Animais , Camundongos , Camundongos Knockout , Proteômica
10.
Biochem Soc Trans ; 49(1): 393-403, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33492363

RESUMO

RNA-binding proteins are customarily regarded as important facilitators of gene expression. In recent years, RNA-protein interactions have also emerged as a pervasive force in the regulation of homeostasis. The compendium of proteins with provable RNA-binding function has swelled from the hundreds to the thousands astride the partnership of mass spectrometry-based proteomics and RNA sequencing. At the foundation of these advances is the adaptation of RNA-centric capture methods that can extract bound protein that has been cross-linked in its native environment. These methods reveal snapshots in time displaying an extensive network of regulation and a wealth of data that can be used for both the discovery of RNA-binding function and the molecular interfaces at which these interactions occur. This review will focus on the impact of these developments on our broader perception of post-transcriptional regulation, and how the technical features of current capture methods, as applied in mammalian systems, create a challenging medium for interpretation by systems biologists and target validation by experimental researchers.


Assuntos
Bioquímica/métodos , Técnicas de Química Analítica/métodos , Proteínas de Ligação a RNA/isolamento & purificação , Animais , Perfilação da Expressão Gênica , Humanos , Comunicação Interdisciplinar , Mamíferos , Espectrometria de Massas , Proteômica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Nat Chem Biol ; 15(11): 1057-1066, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591564

RESUMO

Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection. The critical step in committing a cell to death is activation of BAK or BAX, pro-death BCL-2 proteins mediating mitochondrial damage. Apoptosis cannot proceed in their absence. Here we show that WEHI-9625, a novel tricyclic sulfone small molecule, binds to VDAC2 and promotes its ability to inhibit apoptosis driven by mouse BAK. In contrast to caspase inhibitors, WEHI-9625 blocks apoptosis before mitochondrial damage, preserving cellular function and long-term clonogenic potential. Our findings expand on the key role of VDAC2 in regulating apoptosis and demonstrate that blocking apoptosis at an early stage is both advantageous and pharmacologically tractable.


Assuntos
Apoptose/fisiologia , Bibliotecas de Moléculas Pequenas/metabolismo , Canal de Ânion 2 Dependente de Voltagem/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Animais , Camundongos , Ligação Proteica , Canal de Ânion 2 Dependente de Voltagem/metabolismo
12.
J Proteome Res ; 18(7): 2915-2924, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31137935

RESUMO

Selecting a sample preparation strategy for mass spectrometry-based proteomics is critical to the success of quantitative workflows. Here we present a universal, solid-phase protein preparation (USP3) method which is rapid, robust, and scalable, facilitating high-throughput protein sample preparation for bottom-up and top-down mass spectrometry (MS) analysis. This technique builds upon the single-pot solid-phase-enhanced sample preparation (SP3) where we now demonstrate its scalability (low to high micrograms of protein) and the influence of variables such as bead and enzyme amounts on the efficiency of protein digestion. We also incorporate acid hydrolysis of DNA and RNA during complete proteome extraction resulting in a more reliable method that is simple and easy to implement for routine and high-throughput analysis of proteins. We benchmarked the performance of this technique against filter-aided sample preparation (FASP) using 30 µg of total HeLa protein lysate. We also show that the USP3 method is compatible with top-down MS where we reproducibly detect over 1800 proteoforms from 50 µg of HeLa protein lysate. The USP3 protocol allows for efficient and reproducible data to be generated in a cost-effective and robust manner with minimal down time between sample collection and analysis by MS.


Assuntos
Proteômica/métodos , Manejo de Espécimes/métodos , Coleta de Dados , Células HeLa , Humanos , Espectrometria de Massas/métodos , Proteólise
13.
J Biol Chem ; 293(1): 89-99, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29109150

RESUMO

The 14-3-3 family of intracellular proteins are dimeric, multifunctional adaptor proteins that bind to and regulate the activities of many important signaling proteins. The subunits within 14-3-3 dimers are predicted to be stabilized by salt bridges that are largely conserved across the 14-3-3 protein family and allow the different isoforms to form heterodimers. Here, we have examined the contributions of conserved salt-bridging residues in stabilizing the dimeric state of 14-3-3ζ. Using analytical ultracentrifugation, our results revealed that Asp21 and Glu89 both play key roles in dimer dynamics and contribute to dimer stability. Furthermore, hydrogen-deuterium exchange coupled with mass spectrometry showed that mutation of Asp21 promoted disorder in the N-terminal helices of 14-3-3ζ, suggesting that this residue plays an important role in maintaining structure across the dimer interface. Intriguingly, a D21N 14-3-3ζ mutant exhibited enhanced molecular chaperone ability that prevented amorphous protein aggregation, suggesting a potential role for N-terminal disorder in 14-3-3ζ's poorly understood chaperone action. Taken together, these results imply that disorder in the N-terminal helices of 14-3-3ζ is a consequence of the dimer-monomer dynamics and may play a role in conferring chaperone function to 14-3-3ζ protein.


Assuntos
Proteínas 14-3-3/química , Chaperonas Moleculares/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação Puntual , Agregados Proteicos , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Estabilidade Proteica , Sais/química , Sais/metabolismo , Alinhamento de Sequência
14.
Semin Cell Dev Biol ; 39: 63-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25736836

RESUMO

Cells are constantly subjected to a vast range of potentially lethal insults, which may activate specific molecular pathways that have evolved to kill the cell. Cell death pathways are defined partly by their morphology, and more specifically by the molecules that regulate and enact them. As these pathways become more thoroughly characterized, interesting molecular links between them have emerged, some still controversial and others hinting at the physiological and pathophysiological roles these death pathways play. We describe specific molecular programs controlling cell death, with a focus on some of the distinct features of the pathways and the molecular links between them.


Assuntos
Apoptose , Autofagia , Morte Celular , Transdução de Sinais , Animais , Humanos
15.
Commun Biol ; 7(1): 183, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360932

RESUMO

Autophagy, the process of elimination of cellular components by lysosomal degradation, is essential for animal development and homeostasis. Using the autophagy-dependent Drosophila larval midgut degradation model we identified an autophagy regulator, the RING domain ubiquitin ligase CG14435 (detour). Depletion of detour resulted in increased early-stage autophagic vesicles, premature tissue contraction, and overexpression of detour or mammalian homologues, ZNRF1 and ZNRF2, increased autophagic vesicle size. The ablation of ZNRF1 or ZNRF2 in mammalian cells increased basal autophagy. We identified detour interacting proteins including HOPS subunits, deep orange (dor/VPS18), Vacuolar protein sorting 16A (VPS16A), and light (lt/VPS41) and found that detour promotes their ubiquitination. The detour mutant accumulated autophagy-related proteins in young adults, displayed premature ageing, impaired motor function, and activation of innate immunity. Collectively, our findings suggest a role for detour in autophagy, likely through regulation of HOPS complex, with implications for healthy aging.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Transporte Proteico , Ubiquitinação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Autofagia , Mamíferos
16.
FEBS J ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975872

RESUMO

Immunomodulatory imide drugs (IMiDs) are central components of therapy for multiple myeloma (MM). IMiDs bind cereblon (CRBN), an adaptor for the CUL4-DDB1-RBX1 E3 ligase to change its substrate specificity and induce degradation of 'neosubstrate' transcription factors that are essential to MM cells. Mechanistic studies to date have largely focussed on mediators of therapeutic activity and insight into clinical IMiD toxicities is less developed. We adopted BioID2-dependent proximity labelling (BioID2-CRBN) to characterise the CRBN interactome in the presence and absence of various IMiDs and the proteasome inhibitor, bortezomib. We aimed to leverage this technology to further map CRBN interactions beyond what has been achieved by conventional proteomic techniques. In support of this approach, analysis of cells expressing BioID2-CRBN following IMiD treatment displayed biotinylation of known CRBN interactors and neosubstrates. We observed that bortezomib alone significantly modifies the CRBN interactome. Proximity labelling also suggested that IMiDs augment the interaction between CRBN and proteins that are not degraded, thus designating 'neointeractors' distinct from previously disclosed 'neosubstrates'. Here we identify Non-Muscle Myosin Heavy Chain IIA (MYH9) as a putative CRBN neointeractor that may contribute to the haematological toxicity of IMiDs. These studies provide proof of concept for proximity labelling technologies in the mechanistic profiling of IMiDs and related E3-ligase-modulating drugs.

17.
Autophagy ; : 1-20, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938196

RESUMO

Retromer prevents the destruction of numerous receptors by recycling them from endosomes to the trans-Golgi network or plasma membrane. This enables retromer to fine-tune the activity of many signaling pathways in parallel. However, the mechanism(s) by which retromer function adapts to environmental fluctuations such as nutrient withdrawal and how this affects the fate of its cargoes remains incompletely understood. Here, we reveal that macroautophagy/autophagy inhibition by MTORC1 controls the abundance of retromer+ endosomes under nutrient-replete conditions. Autophagy activation by chemical inhibition of MTOR or nutrient withdrawal does not affect retromer assembly or its interaction with the RAB7 GAP protein TBC1D5, but rather targets these endosomes for bulk destruction following their capture by phagophores. This process appears to be distinct from amphisome formation. TBC1D5 and its ability to bind to retromer, but not its C-terminal LC3-interacting region (LIR) or nutrient-regulated dephosphorylation, is critical for retromer to be captured by autophagosomes following MTOR inhibition. Consequently, endosomal recycling of its cargoes to the plasma membrane and trans-Golgi network is impaired, leading to their lysosomal turnover. These findings demonstrate a mechanistic link connecting nutrient abundance to receptor homeostasis.Abbreviations: AMPK, 5'-AMP-activated protein kinase; APP, amyloid beta precursor protein; ATG, autophagy related; BafA, bafilomycin A1; CQ, chloroquine; DMEM, Dulbecco's minimum essential medium; DPBS, Dulbecco's phosphate-buffered saline; EBSS, Earle's balanced salt solution; FBS, fetal bovine serum; GAP, GTPase-activating protein; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; LIR, LC3-interacting region; LANDO, LC3-associated endocytosis; LP, leupeptin and pepstatin; MTOR, mechanistic target of rapamycin kinase; MTORC1, MTOR complex 1; nutrient stress, withdrawal of amino acids and serum; PDZ, DLG4/PSD95, DLG1, and TJP1/zo-1; RPS6, ribosomal protein S6; RPS6KB1/S6K1, ribosomal protein S6 kinase B1; SLC2A1/GLUT1, solute carrier family 2 member 1; SORL1, sortillin related receptor 1; SORT1, sortillin 1; SNX, sorting nexin; TBC1D5, TBC1 domain family member 5; ULK1, unc-51 like autophagy activating kinase 1; WASH, WASH complex subunit.

18.
Clin Transl Med ; 13(1): e1150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653319

RESUMO

BACKGROUND: Low-density neutrophils (LDN) are a distinct subset of neutrophils rarely detected in healthy people but appear in the blood of patients with autoimmune diseases, including systemic lupus erythematosus (SLE), and are mobilised in response to granulocyte colony-stimulating factor (G-CSF). The aim of this study was to identify novel mechanisms responsible for the pathogenic capacity of LDN in SLE. METHODS: Neutrophils were isolated from donors treated with G-CSF, and whole-cell proteomic analysis was performed on LDN and normal-density neutrophils. RESULTS: CD98 is significantly upregulated in LDN from G-CSF donors and defines a subset of LDN within the blood of SLE patients. CD98 is a transmembrane protein that dimerises with L-type amino acid transporters. We show that CD98 is responsible for the increased bioenergetic capacity of LDN. CD98 on LDN mediates the uptake of essential amino acids that are used by mitochondria to produce adenosine triphosphate, especially in the absence of glucose. Inhibition of CD98 reduces the metabolic flexibility of this population, which may limit their pathogenic capacity. CD98+ LDN produce more proinflammatory cytokines and chemokines than their normal density counterparts and are resistant to apoptosis, which may also contribute to tissue inflammation and end organ damage in SLE. CONCLUSIONS: CD98 provides a phenotypic marker for LDN that facilitates identification of this population without density-gradient separation and represents a novel therapeutic target to limit its pathogenic capacity.


Assuntos
Proteína-1 Reguladora de Fusão , Lúpus Eritematoso Sistêmico , Neutrófilos , Humanos , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Neutrófilos/metabolismo , Proteômica , Proteína-1 Reguladora de Fusão/metabolismo
19.
Front Oncol ; 13: 1192448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637064

RESUMO

Introduction: Diffuse intrinsic pontine glioma (DIPG), recently reclassified as a subtype of diffuse midline glioma, is a highly aggressive brainstem tumor affecting children and young adults, with no cure and a median survival of only 9 months. Conventional treatments are ineffective, highlighting the need for alternative therapeutic strategies such as cellular immunotherapy. However, identifying unique and tumor-specific cell surface antigens to target with chimeric antigen receptor (CAR) or T-cell receptor (TCR) therapies is challenging. Methods: In this study, a multi-omics approach was used to interrogate patient-derived DIPG cell lines and to identify potential targets for immunotherapy. Results: Through immunopeptidomics, a range of targetable peptide antigens from cancer testis and tumor-associated antigens as well as peptides derived from human endogenous retroviral elements were identified. Proteomics analysis also revealed upregulation of potential drug targets and cell surface proteins such as Cluster of differentiation 27 (CD276) B7 homolog 3 protein (B7H3), Interleukin 13 alpha receptor 2 (IL-13Rα2), Human Epidermal Growth Factor Receptor 3 (HER2), Ephrin Type-A Receptor 2 (EphA2), and Ephrin Type-A Receptor 3 (EphA3). Discussion: The results of this study provide a valuable resource for the scientific community to accelerate immunotherapeutic approaches for DIPG. Identifying potential targets for CAR and TCR therapies could open up new avenues for treating this devastating disease.

20.
J Extracell Vesicles ; 11(2): e12188, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35106941

RESUMO

Extracellular vesicles (EVs) are important mediators of intercellular communication. However, EV biogenesis remains poorly understood. We previously defined a role for Arrdc4 (Arrestin domain containing protein 4), an adaptor for Nedd4 family ubiquitin ligases, in the biogenesis of EVs. Here we report that ubiquitination of Arrdc4 is critical for its role in EV secretion. We identified five potential ubiquitinated lysine residues in Arrdc4 using mass spectrometry. By analysing Arrdc4 lysine mutants we discovered that lysine 270 (K270) is critical for Arrdc4 function in EV biogenesis. Arrdc4K270R mutation caused a decrease in the number of EVs released by cells compared to Arrdc4WT , and a reduction in trafficking of divalent metal transporter (DMT1) into EVs. Furthermore, we also observed a decrease in DMT1 activity and an increase in its intracellular degradation in the presence of Arrdc4K270R . K270 was found to be ubiquitinated with K-29 polyubiquitin chains by the ubiquitin ligase Nedd4-2. Thus, our results uncover a novel role of K-29 polyubiquitin chains in Arrdc4-mediated EV biogenesis and protein trafficking.


Assuntos
Vesículas Extracelulares , Ubiquitina-Proteína Ligases , Vesículas Extracelulares/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Poliubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA