Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212997

RESUMO

Patient-derived cancer 3D models are a promising tool that will revolutionize personalized cancer therapy but that require previous knowledge of optimal cell growth conditions and the most advantageous parameters to evaluate biomimetic relevance and monitor therapy efficacy. This study aims to establish general guidelines on 3D model characterization phenomena, focusing on neuroblastoma. We generated gelatin-based scaffolds with different stiffness and performed SK-N-BE(2) and SH-SY5Y aggressive neuroblastoma cell cultures, also performing co-cultures with mouse stromal Schwann cell line (SW10). Model characterization by digital image analysis at different time points revealed that cell proliferation, vitronectin production, and migration-related gene expression depend on growing conditions and are specific to the tumor cell line. Morphometric data show that 3D in vitro models can help generate optimal patient-derived cancer models, by creating, identifying, and choosing patterns of clinically relevant artificial microenvironments to predict patient tumor cell behavior and therapeutic responses.


Assuntos
Movimento Celular , Proliferação de Células , Processamento de Imagem Assistida por Computador , Proteínas de Neoplasias/biossíntese , Neuroblastoma , Biossíntese de Proteínas , Linhagem Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia
2.
Proc Natl Acad Sci U S A ; 113(20): E2766-75, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140600

RESUMO

Among the 15 extracellular domains of the mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R), domain 11 has evolved a binding site for IGF2 to negatively regulate ligand bioavailability and mammalian growth. Despite the highly evolved structural loops of the IGF2:domain 11 binding site, affinity-enhancing AB loop mutations suggest that binding is modifiable. Here we examine the extent to which IGF2:domain 11 affinity, and its specificity over IGF1, can be enhanced, and we examine the structural basis of the mechanistic and functional consequences. Domain 11 binding loop mutants were selected by yeast surface display combined with high-resolution structure-based predictions, and validated by surface plasmon resonance. We discovered previously unidentified mutations in the ligand-interacting surface binding loops (AB, CD, FG, and HI). Five combined mutations increased rigidity of the AB loop, as confirmed by NMR. When added to three independently identified CD and FG loop mutations that reduced the koff value by twofold, these mutations resulted in an overall selective 100-fold improvement in affinity. The structural basis of the evolved affinity was improved shape complementarity established by interloop (AB-CD) and intraloop (FG-FG) side chain interactions. The high affinity of the combinatorial domain 11 Fc fusion proteins functioned as ligand-soluble antagonists or traps that depleted pathological IGF2 isoforms from serum and abrogated IGF2-dependent signaling in vivo. An evolved and reengineered high-specificity M6P/IGF2R domain 11 binding site for IGF2 may improve therapeutic targeting of the frequent IGF2 gain of function observed in human cancer.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Receptor IGF Tipo 2/metabolismo , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Cristalografia por Raios X , Evolução Molecular Direcionada , Humanos , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/genética , Modelos Moleculares , Pichia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptor IGF Tipo 2/antagonistas & inibidores , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/genética
3.
Front Cell Dev Biol ; 10: 1052098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467415

RESUMO

The incidence of new cancer cases is expected to increase significantly in the future, posing a worldwide problem. In this regard, precision oncology and its diagnostic tools are essential for developing personalized cancer treatments. Digital pathology (DP) is a particularly key strategy to study the interactions of tumor cells and the tumor microenvironment (TME), which play a crucial role in tumor initiation, progression and metastasis. The purpose of this study was to integrate data on the digital patterns of reticulin fiber scaffolding and the immune cell infiltrate, transcriptomic and epigenetic profiles in aggressive uterine adenocarcinoma (uADC), uterine leiomyosarcoma (uLMS) and their respective lung metastases, with the aim of obtaining key TME biomarkers that can help improve metastatic prediction and shed light on potential therapeutic targets. Automatized algorithms were used to analyze reticulin fiber architecture and immune infiltration in colocalized regions of interest (ROIs) of 133 invasive tumor front (ITF), 89 tumor niches and 70 target tissues in a total of six paired samples of uADC and nine of uLMS. Microdissected tissue from the ITF was employed for transcriptomic and epigenetic studies in primary and metastatic tumors. Reticulin fiber scaffolding was characterized by a large and loose reticular fiber network in uADC, while dense bundles were found in uLMS. Notably, more similarities between reticulin fibers were observed in paired uLMS then paired uADCs. Transcriptomic and multiplex immunofluorescence-based immune profiling showed a higher abundance of T and B cells in primary tumor and in metastatic uADC than uLMS. Moreover, the epigenetic signature of paired samples in uADCs showed more differences than paired samples in uLMS. Some epigenetic variation was also found between the ITF of metastatic uADC and uLMS. Altogether, our data suggest a correlation between morphological and molecular changes at the ITF and the degree of aggressiveness. The use of DP tools for characterizing reticulin scaffolding and immune cell infiltration at the ITF in paired samples together with information provided by omics analyses in a large cohort will hopefully help validate novel biomarkers of tumor aggressiveness, develop new drugs and improve patient quality of life in a much more efficient way.

4.
Biomedicines ; 9(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356862

RESUMO

The study of cancer biology should be based around a comprehensive vision of the entire tumor ecosystem, considering the functional, bioenergetic and metabolic state of tumor cells and those of their microenvironment, and placing particular importance on immune system cells. Enhanced understanding of the molecular bases that give rise to alterations of pathways related to tumor development can open up new therapeutic intervention opportunities, such as metabolic regulation applied to immunotherapy. This review outlines the role of various oncometabolites and immunometabolites, such as TCA intermediates, in shaping pro/anti-inflammatory activity of immune cells such as MDSCs, T lymphocytes, TAMs and DCs in cancer. We also discuss the extraordinary plasticity of the immune response and its implication in immunotherapy efficacy, and highlight different therapeutic intervention possibilities based on controlling the balanced systems of specific metabolites with antagonistic functions.

5.
Front Cell Dev Biol ; 9: 670185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150764

RESUMO

The invasive tumor front (the tumor-host interface) is vitally important in malignant cell progression and metastasis. Tumor cell interactions with resident and infiltrating host cells and with the surrounding extracellular matrix and secreted factors ultimately determine the fate of the tumor. Herein we focus on the invasive tumor front, making an in-depth characterization of reticular fiber scaffolding, infiltrating immune cells, gene expression, and epigenetic profiles of classified aggressive primary uterine adenocarcinomas (24 patients) and leiomyosarcomas (11 patients). Sections of formalin-fixed samples before and after microdissection were scanned and studied. Reticular fiber architecture and immune cell infiltration were analyzed by automatized algorithms in colocalized regions of interest. Despite morphometric resemblance between reticular fibers and high presence of macrophages, we found some variance in other immune cell populations and distinctive gene expression and cell adhesion-related methylation signatures. Although no evident overall differences in immune response were detected at the gene expression and methylation level, impaired antimicrobial humoral response might be involved in uterine leiomyosarcoma spread. Similarities found at the invasive tumor front of uterine adenocarcinomas and leiomyosarcomas could facilitate the use of common biomarkers and therapies. Furthermore, molecular and architectural characterization of the invasive front of uterine malignancies may provide additional prognostic information beyond established prognostic factors.

6.
Cancers (Basel) ; 12(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599891

RESUMO

Tumor progression is mediated by reciprocal interaction between tumor cells and their surrounding tumor microenvironment (TME), which among other factors encompasses the extracellular milieu, immune cells, fibroblasts, and the vascular system. However, the complexity of cancer goes beyond the local interaction of tumor cells with their microenvironment. We are on the path to understanding cancer from a systemic viewpoint where the host macroenvironment also plays a crucial role in determining tumor progression. Indeed, growing evidence is emerging on the impact of the gut microbiota, metabolism, biomechanics, and the neuroimmunological axis on cancer. Thus, external factors capable of influencing the entire body system, such as emotional stress, surgery, or psychosocial factors, must be taken into consideration for enhanced management and treatment of cancer patients. In this article, we review prognostic and predictive biomarkers, as well as their potential evaluation and quantitative analysis. Our overarching aim is to open up new fields of study and intervention possibilities, within the framework of an integral vision of cancer as a functional tissue with the capacity to respond to different non-cytotoxic factors, hormonal, immunological, and mechanical forces, and others inducing stroma and tumor reprogramming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA