Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176080

RESUMO

Photosynthetic organisms, such as higher plants and algae, require light to survive. However, an excessive amount of light can be harmful due to the production of reactive oxygen species (ROS), which cause cell damage and, if it is not effectively regulated, cell death. The study of plants' responses to light can aid in the development of methods to improve plants' growth and productivity. Due to the multicellular nature of plants, there may be variations in the results based on plant age and tissue type. Chlamydomonas reinhardtii, a unicellular green alga, has also been used as a model organism to study photosynthesis and photoprotection. Nonetheless, the majority of the research has been conducted with strains that have been consistently utilized in laboratories and originated from the same source. Despite the availability of many field isolates of this species, very few studies have compared the light responses of field isolates. This study examined the responses of two field isolates of Chlamydomonas to high light stress. The light-tolerant strain, CC-4414, managed reactive oxygen species (ROS) slightly better than the sensitive strain, CC-2344, did. The proteomic data of cells subjected to high light revealed cellular modifications of the light-tolerant strain toward membrane proteins. The morphology of cells under light stress revealed that this strain utilized the formation of palmelloid structures and cell aggregation to shield cells from excessive light. As indicated by proteome data, morphological modifications occur simultaneously with the increase in protein degradation and autophagy. By protecting cells from stress, cells are able to continue to upregulate ROS management mechanisms and prevent cell death. This is the first report of palmelloid formation in Chlamydomonas under high light stress.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Chlamydomonas/metabolismo , Fotossíntese/fisiologia
2.
Scientifica (Cairo) ; 2024: 1898624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293704

RESUMO

Light plays a significant role in microalgae cultivation, significantly influencing critical parameters, including biomass production, pigment content, and the accumulation of metabolic compounds. This study was intricately designed to optimize light intensities, explicitly targeting enhancing growth, pigmentation, and antioxidative properties in the green microalga, Scenedesmus falcatus (KU.B1). Additionally, the study delved into the photosynthetic efficiency in light responses of S. falcatus. The cultivation of S. falcatus was conducted in TRIS-acetate-phosphate medium (TAP medium) under different light intensities of 100, 500, and 1000 µmol photons m-2·s-1 within a photoperiodic cycle of 12 h of light and 12 h of dark. Results indicated a gradual increase in the growth of S. falcatus under high light conditions at 1000 µmol photons m-2·s-1, reaching a maximum optical density of 1.33 ± 0.03 and a total chlorophyll content of 22.67 ± 0.2 µg/ml at 120 h. Conversely, a slower growth rate was observed under low light at 100 µmol photons m-2·s-1. However, noteworthy reductions in the maximum quantum yield (Fv/Fm) and actual quantum yield (Y(II)) were observed under 1000 µmol photons m-2·s-1, reflecting a decline in algal photosynthetic efficiency. Interestingly, these changes under 1000 µmol photons m-2·s-1 were concurrent with a significant accumulation of a high amount of beta-carotene (919.83 ± 26.33 mg/g sample), lutein (34.56 ± 0.19 mg/g sample), and canthaxanthin (24.00 ± 0.38 mg/g sample) within algal cells. Nevertheless, it was noted that antioxidant activities and levels of total phenolic compounds (TPCs) decreased under high light at 1000 µmol photons m-2·s-1, with IC50 of DPPH assay recorded at 218.00 ± 4.24 and TPC at 230.83 ± 86.75 mg of GAE/g. The findings suggested that the elevated light intensity at 1000 µmol photons m-2·s-1 enhanced the growth and facilitated the accumulation of valuable carotenoid pigment in S. falcatus, presenting potential applications in the functional food and carotenoid industry.

3.
Plants (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34451718

RESUMO

Sterols and squalene are essential biomolecules required for the homeostasis of eukaryotic membrane permeability and fluidity. Both compounds have beneficial effects on human health. As the current sources of sterols and squalene are plant and shark oils, microalgae are suggested as more sustainable sources. Nonetheless, the high costs of production and processing still hinder the commercialization of algal cultivation. Strain improvement for higher product yield and tolerance to harsh environments is an attractive way to reduce costs. Being an intermediate in sterol synthesis, squalene is converted to squalene epoxide by squalene epoxidase. This step is inhibited by terbinafine, a commonly used antifungal drug. In yeasts, some terbinafine-resistant strains overproduced sterols, but similar microalgae strains have not been reported. Mutants that exhibit greater tolerance to terbinafine might accumulate increased sterols and squalene content, along with the ability to tolerate the drug and other stresses, which are beneficial for outdoor cultivation. To explore this possibility, terbinafine-resistant mutants were isolated in the model green microalga Chlamydomonas reinhardtii using UV mutagenesis. Three mutants were identified and all of them exhibited approximately 50 percent overproduction of sterols. Under terbinafine treatment, one of the mutants also accumulated around 50 percent higher levels of squalene. The higher accumulation of pigments and triacylglycerol were also observed. Along with resistance to terbinafine, this mutant also exhibited higher resistance to oxidative stress. Altogether, resistance to terbinafine can be used to screen for strains with increased levels of sterols or squalene in green microalgae without growth compromise.

4.
Nat Prod Res ; 35(21): 3873-3879, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32252565

RESUMO

Phytochemical examination of Clausena lenis Drake (Rutaceae), collected in Thailand, led to the isolation of seven coumarins, four furoquinolines, two amides, and one flavonoid glycoside. Four of these compounds, one coumarine derivative named as gravelliferone A (3), two furoquinoline derivatives (kokusagenin A (8) and B (9)) and one amide, clausenalansamide H (13), are reported for the first time. Compound 3 was isolated from the root bark, compound 8 from the stem bark and compounds 9 and 13 from the leaves. The molecular structures of all isolated compounds were established by means of NMR experiments combined with mass spectrometry. Preliminary tests of the lipophilic stem bark extract against various human pathogenic bacteria strains revealed promising effects against Staphylococcus aureus ATCC 43300.


Assuntos
Clausena , Rutaceae , Cumarínicos/farmacologia , Humanos , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Folhas de Planta
5.
Bot Stud ; 56(1): 3, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28510812

RESUMO

BACKGROUND: Mimosa pigra is an invasive weed in some regions of South East Asia and Australia. Our previous study has revealed that a cyanobacterium, Nostoc sp., extract can inhibit root growth in M. pigra seedlings. In this study, some physiological processes involve oxidative stress-mediated cell death and root ultrastructure were investigated to clarify the mechanisms of root growth suppression and bioherbicidal potential of the extract. RESULTS: Nostoc sp. extract enhanced overproduction of reactive oxygen species (ROS) at 24 h, the intensity of red fluorescence increased at 72 h, and caused a slightly increased H2O2 consistent with the activation of scavenging enzymes (catalase, ascorbic acid peroxidase, glutathione reductase, and peroxidases). This suggests that oxidative stress occurred in the presence of the extract which was supported by increased cell death and lipid peroxidation at 24 h. Reduction of malondialdehyde content and an increase in cell death at 72 h indicated oxidative damage and cellular leakage. Ultrastructural changes were determined at 72 h by scanning electron micrographs which confirmed the damage of epidermal and root cap cells and the disaggregation and destruction of root tip cells. Transmission electron micrographs showed the dissolution of the middle lamella, deposition of some substances in vacuoles, and abnormal mitochondria (swollen mitochondria and indistinct cristae). CONCLUSIONS: Nostoc sp. extract enhance oxidative stress by ROS production resulting in lipid peroxidation and massive cell death despite the activation of antioxidative enzymes. Understanding mechanism of action of Nostoc sp. extract will provide information for application of the extract to use as natural herbicide for control of M. pigra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA