Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 249: 118387, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336162

RESUMO

Achieving a balance between greenhouse gas mitigation and biomass production in grasslands necessitates optimizing irrigation frequency and nitrogen addition, which significantly influence grassland productivity and soil nitrous oxide emissions, and consequently impact the ecosystem carbon dioxide exchange. This study aimed to elucidate these influences using a controlled mesocosm experiment where bermudagrass (Cynodon dactylon L.) was cultivated under varied irrigation frequencies (daily and every 6 days) with (100 kg ha-1) or without nitrogen addition; measurements of net ecosystem carbon dioxide exchange, ecosystem respiration, soil respiration, and nitrous oxide emissions across two cutting events were performed as well. The findings revealed a critical interaction between water-filled pore space, regulated by irrigation, and nitrogen availability, with the latter exerting a more substantial influence on aboveground biomass growth and ecosystem carbon dioxide exchange than water availability. Moreover, the total dry matter was significantly higher with nitrogen addition compared to without nitrogen addition, irrespective of the irrigation frequency. In contrast, soil nitrous oxide emissions were observed to be significantly higher with increased irrigation frequency and nitrogen addition. The effects of nitrogen addition on soil respiration components appeared to depend on water availability, with autotrophic respiration seeing a significant rise with nitrogen addition under limited irrigation (5.4 ± 0.6 µmol m-2 s-1). Interestingly, the lower irrigation frequency did not result in water stress, suggesting resilience in bermudagrass. These findings highlight the importance of considering interactions between irrigation and nitrogen addition to optimize water and nitrogen input in grasslands for a synergistic balance between grassland biomass production and greenhouse gas emission mitigation.


Assuntos
Irrigação Agrícola , Biomassa , Pradaria , Gases de Efeito Estufa , Nitrogênio , Gases de Efeito Estufa/análise , Nitrogênio/metabolismo , Irrigação Agrícola/métodos , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Solo/química , Cynodon/crescimento & desenvolvimento , Cynodon/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Fertilizantes/análise
2.
J Environ Manage ; 324: 116391, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36198220

RESUMO

The increased frequency of extreme weather variations worldwide has resulted in dramatic changes in the soil water content via pronounced drying and rewetting cycles (DWCs). A comprehensive exploration of carbon dioxide (CO2) and nitrous oxide (N2O) emissions in response to DWCs can help summarize the existing results and better estimate terrestrial greenhouse gas emissions under the intensified drought and precipitation variations. This meta-analysis based on soil emissions of CO2 (868 observations, 29 studies) and N2O (52 observations, 19 studies) at the global scale investigated the direction and intensity of the changes in soil CO2 and N2O emissions in response to DWCs as controlled by experimental variables including land use type, soil texture, soil nutrients, and frequency and duration of DWCs. The results showed that, compared to the constant soil water content, DWCs led to the increase in CO2 emissions by 35.7% (95% confidence intervals ranging from 0.300 to 0.415), whereas it had no significant effect on N2O emissions (-0.2638 to 1.4751). The random-effects model indicated that soil water-filled pore space during wetting, soil clay content, days of drying and wetting, and frequency of DWCs significantly affected CO2 and N2O emissions in response to DWCs. Furthermore, potential biotic and abiotic factors affecting soil CO2 and N2O emissions under DWCs are also summarized, and it was proposed that mobility and availability of carbon substrate as well as enhanced microbial activity and abundance are the main drivers facilitating soil CO2 and N2O emissions in response to DWCs. However, soil gas diffusion or oxygen availability also dominated soil N2O emissions under DWCs. Overall, this study improves our understanding of soil CO2 and N2O emissions in response to various DWC scenarios and facilitates the development of better greenhouse gas mitigation strategies against the background of a rapidly changing climate.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Óxido Nitroso/análise , Dióxido de Carbono/análise , Solo/química , Gases de Efeito Estufa/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA