Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 463(Pt 4): 141421, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39362093

RESUMO

The molecular and supramolecular structures of japonica and waxy rice starches under high hydrostatic pressure treatment (450 MPa) were studied and the changes in physicochemical properties were analyzed based on these structures. The molecular structures of japonica and waxy rice starch cause differences in the lamellar structure and physicochemical properties. The thickness of amorphous lamella of japonica rice starch increased at 5 min (2.95 nm) followed by a gradual collapse of lamellar structure. Whereas the thickness of crystalline lamellae of waxy rice starch increased at 15 min (5.92 nm) and the lamellae collapsed suddenly at 20 min. The pasting, rheological and textural characteristics of both starches increased significantly within 10 to 15 min. The decreasing onset temperature and enthalpy of high hydrostatic pressure-treated starches indicated easier gelatinization. High hydrostatic pressure-treatment offers potential for developing starch-based products with low swelling capacity, easy gelatinization, high viscosity and hardness.

2.
Int J Biol Macromol ; 279(Pt 3): 135208, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218176

RESUMO

Changes and causal relationships in the hierarchical structure, thermal, pasting and rheological properties, as well as the digestive behavior of starch under different high hydrostatic pressure (HHP) treatment time were investigated. At 5 min, the thickness of amorphous lamellae increased (2.76 nm) and the content of B2 and B3 chains in the amorphous lamellae decreased significantly (10.78 % and 9.08 %). As the treatment time increased, the crystalline lamellae swelled and tightly arranged double helices located in the crystalline lamellae were disturbed, resulting in a decrease in the content of double helices (12.16 %) and relative crystallinity (16.96 %). Helix dissociation, crystal disruption, lamellar collapse and granule deformation were observed at 20 min. These structural changes were closely linked to variations in the physicochemical behaviors. The thermal parameters decreased gradually, accompanied by a decrease in double helix stability. The swollen crystalline lamellae provided more space for molecular stretching, thus enhancing the pasting characteristics. Regarding the digestive behavior, the swollen amorphous lamellae facilitated the invention of enzyme molecules to hydrolyze the starch at 5 min. The digestion rate coefficient and rapidly digestible starch content increased significantly until 15 min, which demonstrated that starch was more easily digested while retaining its intact granular form.

3.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1929-1945, 2022 May 25.
Artigo em Zh | MEDLINE | ID: mdl-35611739

RESUMO

The responsive patterns of phytochrome gene family members to photoperiod and abiotic stresses were comparatively analyzed and the favorable natural variation sites of these genes were identified. This would help understand the mechanism of phytochrome gene family in photoperiod-regulated growth and development and abiotic stress response. In addition, it may facilitate the molecular marker assisted selection of key traits in foxtail millet. In this study, we used RT-PCR to clone three phytochrome genes SiPHYA, SiPHYB and SiPHYC from ultra-late maturity millet landrace variety 'Maosu'. After primary bioinformatics analysis, we studied the photoperiod control mode and the characteristics of these genes in responding to five abiotic stresses including polyethylene glycol (PEG)-simulated drought, natural drought, abscisic acid (ABA), high temperature and NaCl by fluorescence quantitative PCR. Finally, we detected the mutation sites of the three genes among 160 foxtail millet materials and performed haplotype analysis to determine the genes' functional effect. We found that the cloned cDNA sequences of gene SiPHYA, SiPHYB and SiPHYC were 3 981, 3 953 and 3 764 bp respectively, which contained complete coding regions. Gene SiPHYB and SiPHYC showed closer evolutionary relationship. Photoperiod regulated all of the three genes, but showed more profound effects on diurnal expression pattern of SiPHYB, SiPHYC than that of SiPHYA. Under short-day, when near heading, the expression levels of SiPHYA and SiPHYB were significantly lower than that under long-day, indicating their roles in suppressing heading of foxtail millet under long-day. SiPHYB and SiPHYC were responsive to PEG-simulated drought, natural drought, ABA and high temperature stresses together. SiPHYA and SiPHYB responded differently to salt stress, whereas SiPHYC did not respond to salt stress. Re-sequencing of 160 foxtail millet materials revealed that SiPHYB was highly conservative. Two missense mutations of SiPHYA, such as single nucleotide polymorphism (SNP) 7 034 522C→T and SNP7 036 657G→C, led to delaying heading and increasing plant height. One missense mutation of SiPHYC, such as SNP5 414 823G→T, led to shortening heading under short-day and delaying heading under long-day, as well as increasing plant height and panicle length regardless of photo-thermal conditions. Photoperiod showed different regulatory effects on SiPHYA, SiPHYB and SiPHYC. SiPHYB and SiPHYC jointly responded to various abiotic stresses except for the salt stress. Compared with the reference genotype, mutation genotypes of SiPHYA and SiPHYC delayed heading and increased plant height and panicle length.


Assuntos
Fitocromo , Setaria (Planta) , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA