Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Klin Monbl Augenheilkd ; 240(4): 536-543, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37164409

RESUMO

PURPOSE: The aim of the study was to describe the clinical and genetic correlation of a c.469 G>A p.(Asp157Asn) heterozygous pathogenic variant in PRPH2 in two siblings of Italian origin. PATIENTS AND METHODS: Both patients underwent ophthalmic examination, electrophysiological testing, autofluorescence imaging, and optical coherence tomography (OCT). Screening for pathogenic variants of the obtained DNA from the family members was carried out. RESULTS: The 52-year-old (♀, index patient) and 50-year-old (♂) siblings had BCVA (OD and OS) of 20/20 and 20/16 (♀) and 20/25 and 20/40 (♂), respectively, and suffered increased sensitivity to glare. Yellow irregular macular deposits, numerous small irregular hypo- and hyperreflective spots at the posterior pole, a patchy loss of photoreceptors, and retinal pigment epithelium (RPE) in the perifoveal region were seen. Electrophysiology showed dysfunction of rods and cones, with more affected cone dysfunction in the index patient, contrary to the generalised rod dysfunction in the brother of the index patient. The clinical, electrophysiological, and multimodal imaging findings of both siblings pointed towards Stargardt retinopathy with heterogenic presentation. The DNA analysis identified an autosomal dominant c.469 G>A p.(Asp157Asn) heterozygous pathogenic variant in PRPH2 associated with autosomal dominant cone-rod dystrophy and rod-cone dystrophy. PRPH2 codes for peripherin-2, a membrane protein that consists of 346 amino acids. CONCLUSIONS: Our findings confirm a heterogeneity in clinical presentation associated with pathogenic variants in PRPH2. It may follow either an autosomal dominant or an autosomal recessive mode of inheritance and show a very heterogeneous clinical manifestation of retinal degeneration, e.g., autosomal dominant retinitis pigmentosa (♂ sibling; II-3) and autosomal dominant cone-rod dystrophy (index ♀ sibling; II-2), autosomal dominant macular dystrophy, and also autosomal recessive retinitis pigmentosa.


Assuntos
Distrofias de Cones e Bastonetes , Distrofias Retinianas , Retinose Pigmentar , Humanos , Masculino , Pessoa de Meia-Idade , Eletrorretinografia , Mutação , Linhagem , Fenótipo , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Irmãos , Tomografia de Coerência Óptica
2.
J Mol Cell Cardiol ; 141: 30-42, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32173353

RESUMO

Pathological cardiac hypertrophy is an independent risk for heart failure (HF) and sudden death. Deciphering signaling pathways regulating intracellular Ca2+ homeostasis that control adaptive and pathological cardiac growth may enable identification of novel therapeutic targets. The objective of the present study is to determine the role of the store-operated calcium entry-associated regulatory factor (Saraf), encoded by the Tmem66 gene, on cardiac growth control in vitro and in vivo. Saraf is a single-pass membrane protein located at the sarco/endoplasmic reticulum and regulates intracellular calcium homeostasis. We found that Saraf expression was upregulated in the hypertrophied myocardium and was sufficient for cell growth in response to neurohumoral stimulation. Increased Saraf expression caused cell growth, which was associated with dysregulation of calcium-dependent signaling and sarcoplasmic reticulum calcium content. In vivo, Saraf augmented cardiac myocyte growth in response to angiotensin II and resulted in increased cardiac remodeling together with worsened cardiac function. Mechanistically, Saraf activated mTORC1 (mechanistic target of rapamycin complex 1) and increased protein synthesis, while mTORC1 inhibition blunted Saraf-dependent cell growth. In contrast, the hearts of Saraf knockout mice and Saraf-deficient myocytes did not show any morphological or functional alterations after neurohumoral stimulation, but Saraf depletion resulted in worsened cardiac function after acute pressure overload. SARAF knockout blunted transverse aortic constriction cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for SARAF in compensatory myocyte growth. Collectively, these results reveal a novel link between sarcoplasmic reticulum calcium homeostasis and mTORC1 activation that is regulated by Saraf.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Coração/crescimento & desenvolvimento , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Sequência de Bases , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Tamanho Celular , Eletrocardiografia , Técnicas de Silenciamento de Genes , Testes de Função Cardíaca , Homeostase , Humanos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA