Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Res ; 215(Pt 1): 114214, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058273

RESUMO

Two cyclodextrin-based nanosponges (CD-NSs) were synthesized using diamines with 6 and 12 methylene groups, CDHD6 and CDHD12, respectively, and used as adsorbents to remove 2,4-D from aqueous solutions. The physico-chemical characterization of the CD‒NSs demonstrated that, when using the linker with the longest chain length, the nanosponges show a more compact structure and higher thermal stability, probably due to hydrophobic interactions. SEM micrographs showed significant differences between the two nanosponges used. The adsorption of 2,4-D was assessed in terms of different parameters, including solid/liquid ratio, pH, kinetics and isotherms. Adsorption occurred preferentially at lower pH values and for short-chain crosslinked nanosponges; while the former is explained by the balance of acid-base characteristics of the adsorbent and adsorbate, the latter can be justified by the increase in the crosslinker-crosslinker interactions, predominantly hydrophobic, rather than adsorbent-adsorbate interactions. The maximum adsorption capacity at the equilibrium (qe) was 20,903 mmol/kg, obtained using CDHD12 with an initial 2,4-D concentration of 2 mmol/L. An environmentally friendly strategy, based on alkali desorption, was developed to recycle and reuse the adsorbents. On the basis of the results obtained, cyclodextrin-based nanosponges appear promising materials for an economically feasible removal of phenoxy herbicides, to be used as potential adsorbents for the sustainable management of agricultural wastewaters.


Assuntos
Ciclodextrinas , Herbicidas , beta-Ciclodextrinas , Ácido 2,4-Diclorofenoxiacético , Adsorção , Álcalis , Ciclodextrinas/química , Diaminas , Águas Residuárias , beta-Ciclodextrinas/química
2.
J Environ Manage ; 310: 114701, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217443

RESUMO

Three tailor-made magnetic metal-ceramic nanocomposites, obtained from zeolite A (ZA1 and ZA2) and a natural clinoptilolite (LB1), have been used as adsorbents to remove sulfanilamide (SA), a sulfonamide antibiotic of common use, from water. A patented process for the synthesis of nanocomposites has been suitably modified to maximize the efficiency of the SA removal, as well as to extend the applicability of the materials. The role played by the main process parameters (kinetic, pH, initial concentration of SA) has been characterized. The significant effect of the pH on the SA removal has been explained identifying two possibly coexisting mechanisms of SA adsorption, based on polar and hydrophobic interactions, respectively. The adsorption kinetics have been in all cases described by the pseudo second-order model. The adsorption isotherms obtained with ZA1 have been satisfactorily described by the Langmuir model, suggesting a monolayer adsorption of SA on the magnetic nanocomposites resulting from a uniform surface energy. The isotherms obtained with LB1 could be described by a more complex approach, deriving by the additive superposition of Langmuir and Sips models. In order to ensure an effective removal of the antibiotic and a proper recycle of the magnetic adsorbents, a sustainable regeneration procedure of the exhausted adsorbent has been developed, based on the treatment with a dilute solution of NaOH.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cerâmica , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Nanocompostos/química , Sulfanilamida , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
Chembiochem ; 18(18): 1845-1854, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28650563

RESUMO

Colwellia psychrerythraea 34H is a Gram-negative cold-adapted microorganism that adopts many strategies to cope with the limitations associated with the low temperatures of its habitat. In this study, we report the complete characterization of the lipid A moiety from the lipopolysaccharide of Colwellia. Lipid A and its partially deacylated derivative were completely characterized by high-resolution mass spectrometry, NMR spectroscopy, and chemical analysis. An unusual structure with a 3-hydroxy unsaturated tetradecenoic acid as a component of the primary acylation pattern was identified. In addition, the presence of a partially acylated phosphoglycerol moiety on the secondary acylation site at the 3-position of the reducing 2-amino-2-deoxyglucopyranose unit caused tremendous natural heterogeneity in the structure of lipid A. Biological-activity assays indicated that C. psychrerythraea 34H lipid A did not show an agonistic or antagonistic effect upon testing in human macrophages.


Assuntos
Alteromonadaceae/metabolismo , Lipídeo A/química , Temperatura Baixa , Cromatografia Gasosa-Espectrometria de Massas , Lipídeo A/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
4.
Antonie Van Leeuwenhoek ; 110(11): 1377-1387, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28161737

RESUMO

Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: â†’4)-ß-D-GlcpNAcA-(1 â†’3)-ß-D-QuipNAc4NAc-(1 â†’3)-ß-D-GalpNAc-(1 â†’. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity.


Assuntos
Alteromonadaceae/química , Amino Açúcares/química , Proteínas Anticongelantes/química , Modelos Moleculares , Polissacarídeos Bacterianos/química , Adaptação Fisiológica , Alteromonadaceae/citologia , Proteínas Anticongelantes/isolamento & purificação , Sequência de Carboidratos , Temperatura Baixa , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Dinâmica Molecular , Polissacarídeos Bacterianos/isolamento & purificação
5.
Extremophiles ; 20(2): 227-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26847199

RESUMO

Microbial biofilms are mainly studied due to detrimental effects on human health but they are also well established in industrial biotechnology for the production of chemicals. Moreover, biofilm can be considered as a source of novel drugs since the conditions prevailing within biofilm can allow the production of specific metabolites. Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 when grown in biofilm condition produces an anti-biofilm molecule able to inhibit the biofilm of the opportunistic pathogen Staphylococcus epidermidis. In this paper we set up a P. haloplanktis TAC125 biofilm cultivation methodology in automatic bioreactor. The biofilm cultivation was designated to obtain two goals: (1) the scale up of cell-free supernatant production in an amount necessary for the anti-biofilm molecule/s purification; (2) the recovery of P. haloplanktis TAC125 cells grown in biofilm for physiological studies. We set up a fluidized-bed reactor fermentation in which floating polystyrene supports were homogeneously mixed, exposing an optimal air-liquid interface to let bacterium biofilm formation. The proposed methodology allowed a large-scale production of anti-biofilm molecule and paved the way to study differences between P. haloplanktis TAC125 cells grown in biofilm and in planktonic conditions. In particular, the modifications occurring in the lipopolysaccharide of cells grown in biofilm were investigated.


Assuntos
Antibacterianos/biossíntese , Biofilmes/efeitos dos fármacos , Descoberta de Drogas/métodos , Pseudoalteromonas/metabolismo , Antibacterianos/farmacologia , Reatores Biológicos , Descoberta de Drogas/instrumentação , Fermentação , Pseudoalteromonas/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia
6.
J Am Chem Soc ; 137(1): 179-89, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25525681

RESUMO

The low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one- and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanics and dynamics calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments.


Assuntos
Alteromonadaceae/química , Proteínas Anticongelantes/química , Polissacarídeos/química , Alteromonadaceae/citologia , Proteínas Anticongelantes/isolamento & purificação , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Polissacarídeos/isolamento & purificação
7.
Microb Cell Fact ; 14: 106, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26208726

RESUMO

BACKGROUND: Escherichia coli is, to date, the most used microorganism for the production of recombinant proteins and biotechnologically relevant metabolites. High density cell cultures allow efficient biomass and protein yields. However, their main limitation is the accumulation of acetate as a by-product of unbalanced carbon metabolism. Increased concentrations of acetate can inhibit cellular growth and recombinant protein production, and many efforts have been made to overcome this problem. On the other hand, it is known that E. coli is able to grow on acetate as the sole carbon source, although this mechanism has never been employed for the production of recombinant proteins. RESULTS: By optimization of the fermentation parameters, we have been able to develop a new acetate containing medium for the production of a recombinant protein in E. coli BL21(DE3). The medium is based on a buffering phosphate system supplemented with 0.5% yeast extract for essential nutrients and sodium acetate as additional carbon source, and it is compatible with lactose induction. We tested these culture conditions for the production of MNEI, a single chain derivative of the sweet plant protein monellin, with potential for food and beverage industries. We noticed that careful oxygenation and pH control were needed for efficient protein production. The expression method was also coupled to a faster and more efficient purification technique, which allowed us to obtain MNEI with a purity higher than 99%. CONCLUSIONS: The method introduced represents a new strategy for the production of MNEI in E. coli BL21(DE3) with a simple and convenient process, and offers a new perspective on the capabilities of this microorganism as a biotechnological tool. The conditions employed are potentially scalable to industrial processes and require only low-priced reagents, thus dramatically lowering production costs on both laboratory and industrial scale. The yield of recombinant MNEI in these conditions was the highest to date from E. coli cultures, reaching on average ~180 mg/L of culture, versus typical LB/IPTG yields of about 30 mg/L.


Assuntos
Acetatos/metabolismo , Escherichia coli/metabolismo , Proteínas de Plantas/biossíntese , Meios de Cultura/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fermentação , Proteínas de Plantas/genética
8.
Phys Chem Chem Phys ; 17(43): 28950-7, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26456488

RESUMO

The simple means adopted for investigating H-Y zeolite acidity in water is the pH-dependence of the amount of a basic molecule adsorbed under isochoric conditions, a technique capable of yielding, under equilibrium conditions, an estimate of the pKa value of the involved acidic centres: the behaviour with temperature of adsorbed amounts yields instead some information on thermodynamics. Simazine (Sim, 2-chloro-4,6-bis(ethylamino)-s-triazine) was chosen as an adsorbate because its transverse dimension (7.5 Å) is close to the opening of the supercage in the faujasite structure of H-Y (7.4 Å). In short term measurements, Sim adsorption at 25 °C occurs only at the outer surface of H-Y particles. Two types of mildly acidic centres are present (with pKaca. 7 and ca. 8, respectively) and no strong one is observed. Previous adsorption of ammonia from the gas phase discriminates between the two. The former survives, and shows features common with the silanols of amorphous silica. The latter is suppressed: because of this and other features distinguishing this site from silanol species (e.g. the formation of dimeric Sim2H(+) species, favoured by coverage and unfavoured by temperatures of adsorption higher than ambient temperature) a candidate is an Al based site. We propose a Lewis centre coordinating a water molecule, exhibiting acidic properties. This acidic water molecule can be replaced by the stronger base ammonia, also depleting inner strong Brønsted sites. A mechanism for the generation of the two sites from surface Brønsted species is proposed. Long term adsorption measurements at 25 °C already show the onset of the interaction with inner strongly acidic Brønsted sites: because of its size, activation is required for Sim to pass the supercage openings and reach inner acidic sites. When adsorption is run at 40-50 °C, uptake is much larger and increases with temperature. Isochoric measurements suggest a pKa value of ca. 3 compatible with its marked acidic nature, although attainment of equilibrium conditions is questionable. Measurements at 60 °C (both isochors and DRIFT) show the onset of changes at the outer surface brought about by the presence of hot water. Control experiments run with USY (Ultra Stabilized zeolite Y), featuring wormholes and cavities rendering accessible internal sites, show the extensive involvement of internal Brønsted sites already at 25 °C.


Assuntos
Ácidos/química , Zeolitas/química , Adsorção , Concentração de Íons de Hidrogênio , Simazina/química , Propriedades de Superfície , Temperatura , Termodinâmica
9.
Appl Microbiol Biotechnol ; 99(14): 5863-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25616525

RESUMO

Obtaining high levels of pure proteins remains the main bottleneck of many scientific and biotechnological studies. Among all the available recombinant expression systems, Escherichia coli facilitates gene expression by its relative simplicity, inexpensive and fast cultivation, well-known genetics and the large number of tools available for its biotechnological application. However, recombinant expression in E. coli is not always a straightforward procedure and major obstacles are encountered when producing many eukaryotic proteins and especially membrane proteins, linked to missing posttranslational modifications, proteolysis and aggregation. In this context, many conventional and unconventional eukaryotic hosts are under exploration and development, but in some cases linked to complex culture media or processes. In this context, alternative bacterial systems able to overcome some of the limitations posed by E. coli keeping the simplicity of prokaryotic manipulation are currently emerging as convenient hosts for protein production. We have comparatively produced a "difficult-to-express" human protein, the lysosomal enzyme alpha-galactosidase A (hGLA) in E. coli and in the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 cells (P. haloplanktis TAC125). While in E. coli the production of active hGLA was unreachable due to proteolytic instability and/or protein misfolding, the expression of hGLA gene in P. haloplanktis TAC125 allows obtaining active enzyme. These results are discussed in the context of emerging bacterial systems for protein production that represent appealing alternatives to the regular use of E. coli and also of more complex eukaryotic systems.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Recombinantes/biossíntese , alfa-Galactosidase/biossíntese , Biotecnologia/métodos , Estabilidade Enzimática , Humanos , Engenharia Metabólica/métodos , Proteínas Recombinantes/genética , alfa-Galactosidase/genética
10.
J Environ Sci Health B ; 50(11): 777-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26357888

RESUMO

In this work, we studied the removal of simazine from both a model and well water by adsorption on two different adsorbents: zeolite H-Y and a porous silica made in the laboratory by using the sol-gel technique. The pH dependence of the adsorption process and the isotherms and pseudo-isotherms of adsorption were studied. Moreover, an iterative process of simazine removal from both the model and well water, which allowed us to bring the residual simazine concentration below the maximum concentration (0.05 mg L(-1)) of agrochemicals in wastewater to be released in surface waters or in sink allowed by Italian laws, was proposed. The results obtained were very interesting and the conclusions drawn from them partly differed from what could reasonably be expected.


Assuntos
Simazina/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zeolitas/química , Adsorção , Concentração de Íons de Hidrogênio , Itália , Polimetil Metacrilato/química , Porosidade , Dióxido de Silício , Simazina/isolamento & purificação , Águas Residuárias/química , Água , Poluentes Químicos da Água/isolamento & purificação , Poços de Água
11.
Appl Microbiol Biotechnol ; 98(11): 4887-95, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24535258

RESUMO

Recombinant protein production in cold-adapted bacteria has proved to be a valuable option to overcome solubility concerns often came up in conventional expression hosts. ScFvs are examples of "difficult proteins" due to their tendency to form inclusion bodies when expressed in Escherichia coli. In this paper, the recombinant production of a single-chain antibody (ScFvOx) in the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 is reported. The expression vector for the ScFvOx production was designed to address the recombinant protein in the periplasmic space and to allow the formation of the antibody disulphide bonds. For periplasmic export, two different export mechanisms were evaluated. By combining the genetic tools available for recombinant protein expression in psychrophilic hosts with an ad hoc medium and fermentation modality and optimised expression conditions at low temperatures, we obtained the highest yield of soluble and epitope-binding ScFvOx reported so far by conventional prokaryotic expression. The observed proficiency of the Antarctic bacterium to produce recombinant antibody fragments was related to the unusually high number of genes encoding peptidyl prolyl cis-trans isomerases found in P. haloplanktis TAC125 genome, making this bacterium the host of choice for the recombinant production of this protein class.


Assuntos
Pseudoalteromonas/metabolismo , Temperatura Baixa , Vetores Genéticos , Transporte Proteico , Pseudoalteromonas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo
12.
ScientificWorldJournal ; 2014: 931793, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25152928

RESUMO

The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate) in Cengio (Savona, Italy). The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA) and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants.


Assuntos
Biodegradação Ambiental , Methylobacterium , Hidrocarbonetos Policíclicos Aromáticos/química , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Methylobacterium/classificação , Methylobacterium/genética , Methylobacterium/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Plantas/microbiologia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo
13.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470737

RESUMO

Magnetic chitosan nanoparticles, synthesized by in situ precipitation, have been used as adsorbents to remove sulfamethoxazole (SMX), a sulfonamide antibiotic dangerous due to its capacity to enter ecosystems. The adsorption of SMX has been carried out in the presence of tertiary wastewaters from a depuration plant to obtain more realistic results. The effect of pH on the adsorption capacity significantly changed when carrying out the experiments in the presence of wastewater. This change has been explained while taking into account the charge properties of both the antibiotic and the magnetic chitosan. The composition of wastewaters has been characterized and discussed as regards its effect on the adsorption capacity of the magnetic chitosan. The models of Elovich and Freundlich have been selected to describe the adsorption kinetics and the adsorption isotherms, respectively. The analysis of these models has suggested that the adsorption mechanism is based on strong chemical interactions between the SMX and the magnetic chitosan, leading to the formation of an SMX multilayer.

14.
Gels ; 9(10)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37888350

RESUMO

A significant bottleneck for the industrial application of lipases stems from their poor stability in the presence of commercial triglycerides. This is mainly due to the inactivating effect of the products of triglyceride oxidation (PTO), which are usually produced when oils and fats, being imported from far countries, are stored for long periods. In this study, the immobilization of a lipase from Candida rugosa on chitosan hydrogels has been carried out following two alternative approaches based on the enzyme adsorption and entrapment to increase the lipase stability under the operating conditions that are typical of oleochemical transformations. The effect of model compounds representing different classes of PTO on a lipase has been studied to optimize the enzyme immobilization method. Particular attention has been devoted to the characterization of the inactivating effect of PTO in nonaqueous media, which are adopted for most industrial applications of lipases.

15.
Gels ; 9(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36661807

RESUMO

Dyes are considered as one the most important classes of contaminants that threaten the environment and human life. The synergy between the adsorption capacity of chitosan hydrogels and the catalytic properties of the enzyme laccase was exploited to improve the removal of contaminants from a liquid stream. The adsorption capacity of a chitosan hydrogel was tested on three different textile dyes. The effect of pH on the adsorption efficiency was dependent on the dye tested: the removal of methylene blue (MB), a cationic dye, was more effective at alkaline values of pH, whereas bromophenol blue (BPB) and Coomassie brilliant blue (BB), both anionic dyes, were more effectively removed under acid environments. The use of laccase immobilized onto chitosan has significantly improved the efficiency of dye removal, exploiting the synergy between the adsorption capacity of chitosan and the catalytic properties of the enzyme. The simultaneous processes of adsorption and enzymatic degradation improved the dye removal whatever the pH value adopted, making the removal efficiency less dependent from the pH changes. The chitosan used as a support for the immobilization of laccases showed good stability under repeated cycles, demonstrating the feasibility of the method developed for the application in wastewater remediation.

16.
Environ Sci Pollut Res Int ; 30(12): 33349-33362, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474042

RESUMO

The irrigation with treated wastewater is among the main anthropogenic sources for the release of pharmaceuticals (PhACs) into the soils and their translocation into crops, with possible toxic and adverse effects on humans. The arbuscular mycorrhizal fungi (AMF) can be employed for the reduction of organic soil pollutants, even if their efficiency depends on the mycorrhizal fungi, the plant colonized, and the type and concentration of the contaminant. This study aimed to evaluate the uptake of PhACs from wastewaters of different qualities used for the irrigation of mycorrhizal artichoke plants, the presence in their edible parts and the role of the arbuscular mycorrhizal fungi. The research was carried out on artichoke plants not inoculated and inoculated with two different AMF and irrigated with treated wastewater (TW), groundwater (GW) or GW spiked with different and selected PhACs (SGW). The inocula were a crude inoculum of Septoglomus viscosum (MSE) and a commercial inoculum of Glomus intraradices and Glomus mosseae (MSY). The results of the present study showed that carbamazepine and fluconazole were found in the artichoke only with SGW irrigation. The mycorrhizal plants showed a reduction of the pharmaceutical's uptake, and within the AMF, MSE was more effective in preventing their absorption and translocation.


Assuntos
Cynara scolymus , Micorrizas , Poluentes do Solo , Humanos , Águas Residuárias , Solo , Plantas/microbiologia , Poluentes do Solo/análise , Preparações Farmacêuticas , Raízes de Plantas/química
17.
Environ Sci Technol ; 46(3): 1755-63, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22191434

RESUMO

A class II hybrid sol-gel material was prepared starting from zirconium(IV) propoxide and 2,4-pentanedione and its catalytic activity in the removal of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) was revealed. The thermal and structural characterization, performed by thermogravimetry, differential thermal analysis, and diffuse reflectance Fourier transform infrared spectroscopy, demonstrated the hybrid nature of the material. The structure of the material can be described as a polymeric network of zirconium oxo clusters, on the surface of which large part of Zr(4+) ions are involved in strong complexation equilibria with acetylacetonate (acac) ligands. The incubation of MCPA in the presence of this material yielded an herbicide removal fraction up to 98%. A two-step mechanism was proposed for the MCPA removal, in which a reversible first-order adsorption of the herbicide is followed by its catalytic degradation. The nature of the products of the MCPA catalytic degradation as well as the reaction conditions adopted do not support typical oxidation pathways involving radicals, suggesting the existence of a different mechanism in which the Zr(4+):acac enol-type complex can act as Lewis acid catalyst.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético/química , Géis/química , Poluentes Químicos da Água/química , Purificação da Água/instrumentação , Purificação da Água/métodos , Zircônio/química , Ácido 2-Metil-4-clorofenoxiacético/análise , Adsorção , Catálise , Análise Diferencial Térmica , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Pentanonas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Poluentes Químicos da Água/análise
19.
Gels ; 8(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35200505

RESUMO

Three-dimensional chitosan-gallic acid complexes were proposed and prepared for the first time by a simple adsorption process of gallic acid (GA) on three-dimensional chitosan structures (3D chitosan). Highly porous 3D devices facilitate a high GA load, up to 2015 mmol/kg at pH 4.0. The preservation of the redox state of GA released from 3D chitosan was confirmed by spectroscopic analyses. The antioxidant activity of 3D chitosan-GA complexes was assessed using the DPPH radical scavenging assay and was found to be dramatically higher than that of free chitosan. The mechanical property of 3D chitosan-GA complexes was also evaluated using a compression test. Finally, 3D chitosan-GA complexes showed a significant antimicrobial capacity against E. coli and S. aureus, selected, respectively, as a model strain for Gram-negative and Gram-positive bacteria. Our study demonstrated a new, simple, and eco-friendly approach to prepare functional chitosan-based complexes for nutraceutical, cosmeceutical, and pharmaceutical applications.

20.
Environ Sci Technol ; 44(24): 9476-81, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21077667

RESUMO

A single-stage sol-gel route was set to entrap yeast cells of Lipomyces starkeyi in a zirconia (ZrO(2)) matrix, and the remediation ability of the resulting catalyst toward a phenoxy acid herbicide, 4-chloro-2-methylphenoxyacetic acid (MCPA), was studied. It was found that the experimental procedure allowed a high dispersion of the microorganisms into the zirconia gel matrix; the ZrO(2) matrix exhibited a significant sorption capacity of the herbicide, and the entrapped cells showed a degradative activity toward MCPA. The combination of these effects leads to a nearly total removal efficiency (>97%) of the herbicide at 30 °C within 1 h incubation time from a solution containing a very high concentration of MCPA (200 mg L(-1)). On the basis of the experimental evidence, a removal mechanism was proposed involving in the first step the sorption of the herbicide molecules on the ZrO(2) matrix, followed by the microbial degradation operated by the entrapped yeasts, the metabolic activity of which appear enhanced under the microenvironmental conditions established within the zirconia matrix. Repeated batch tests of sorption/degradation of entrapped Lipomyces showed that the removal efficiency retained almost the same value of 97.3% after 3 batch tests, with only a subsequent slight decrease, probably due to the progressive saturation of the zirconia matrix.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Lipomyces/metabolismo , Poluentes Químicos da Água/metabolismo , Ácido 2-Metil-4-clorofenoxiacético/análise , Biodegradação Ambiental , Herbicidas/metabolismo , Transição de Fase , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Zircônio/química , Zircônio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA