Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nano Lett ; 24(3): 929-934, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38173237

RESUMO

Control of the angular momentum of light is a key technology for next-generation nano-optical devices and optical communications, including quantum communication and encoding. We propose an approach to controllably generate circularly polarized light from a circular hole in a metal film using an electron beam by coherently exciting transition radiation and light scattering from the hole through surface plasmon polaritons. The circularly polarized light generation is confirmed by fully polarimetric four-dimensional cathodoluminescence mapping, where angle-resolved spectra are simultaneously obtained. The obtained intensity and Stokes maps show clear interference fringes as well as almost fully circularly polarized light generation with controllable parities by the electron beam position. By applying this approach to a three-hole system, a vortex field with a phase singularity is visualized in the middle of three holes.

2.
Nano Lett ; 24(13): 3971-3977, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501652

RESUMO

Time-resolved or time-correlation measurements using cathodoluminescence (CL) reveal the electronic and optical properties of semiconductors, such as their carrier lifetimes, at the nanoscale. However, halide perovskites, which are promising optoelectronic materials, exhibit significantly different decay dynamics in their CL and photoluminescence (PL). We conducted time-correlation CL measurements of CsPbBr3 using Hanbury Brown-Twiss interferometry and compared them with time-resolved PL. The measured CL decay time was on the order of subnanoseconds and was faster than PL decay at an excited carrier density of 2.1 × 1018 cm-3. Our experiment and analytical model revealed the CL dynamics induced by individual electron incidences, which are characterized by highly localized carrier generation followed by a rapid decrease in carrier density due to diffusion. This carrier diffusion can play a dominant role in the CL decay time for undoped semiconductors, in general, when the diffusion dynamics are faster than the carrier recombination.

3.
Phys Chem Chem Phys ; 24(7): 4588-4594, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35132976

RESUMO

Surface plasmon resonance (SPR) is a highly useful technique in biology and is gradually becoming useful also for materials science. However, measurements to date have been performed almost exclusively on gold, which limits the possibility to probe chemical modifications of other metals. In this work we show that 20 nm Pd and Pt films work "fairly well" for quantitative SPR sensing of organic films despite the high light absorption. In the interval between total reflection and the SPR angle, high intensity changes occur when a film is formed on the surface. Fresnel models accurately describe the full angular spectra and our data analysis provides good resolution of surface coverage in air (a few ng cm-2). Overall, the Pd sensors behave quite similarly to 50 nm gold in terms of sensitivity and field extension, although the noise level in real-time measurements is ∼5 times higher. The Pt sensors exhibit a longer extension of the evanescent field and ∼10 times higher noise compared to gold. Yet, formation of organic layers a few nm in thickness can still be monitored in real-time. As a model system, we use thiolated poly(ethylene glycol) to make Pd and Pt protein repelling. Our findings show how SPR can be used for studying chemical modifications of two metals that are important in several contexts, for instance within heterogeneous catalysis. We emphasize the advantages of simple sample preparation and accurate quantitative analysis in the planar geometry by Fresnel models.


Assuntos
Platina , Ressonância de Plasmônio de Superfície , Ouro , Paládio , Ressonância de Plasmônio de Superfície/métodos
4.
Nano Lett ; 21(15): 6556-6562, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314178

RESUMO

Valley polarization has recently been adopted in optics, offering robust waveguiding and angular momentum sorting. The success of valley systems in photonic crystals suggests a plasmonic counterpart that can merge topological photonics and topological condensed matter systems, for instance, two-dimensional materials with the enhanced light-matter interaction. However, a valley plasmonic waveguide with a sufficient propagation distance in the near-infrared (NIR) or visible spectral range has so far not been realized due to ohmic loss inside the metal. Here, we employ gap surface plasmons for high index contrasting and realize a wide-bandgap valley plasmonic crystal, allowing waveguiding in the NIR-visible range. The edge mode with a propagation distance of 5.3 µm in the range of 1.31-1.36 eV is experimentally confirmed by visualizing the field distributions with a scanning transmission electron microscope cathodoluminescence technique, suggesting a practical platform for transferring angular momentum between photons and carriers in mesoscopic active devices.

5.
Opt Express ; 29(22): 34951-34961, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808942

RESUMO

Transverse spin angular momentum of light is a key concept in recent nanophotonics to realize unidirectional light transport in waveguides by spin-momentum locking. Herein we theoretically propose subwavelength nanoparticle chain waveguides that efficiently sort optical spins with engineerable spin density distributions. By arranging high-refractive-index nanospheres or nanodisks of different sizes in a zigzag manner, directional optical spin propagation is realized. The origin of efficient spin transport is revealed by analyzing the dispersion relation and spin angular momentum density distributions, being attributed to guided modes that possess transverse spin angular momenta. In contrast to conventional waveguides, the proposed asymmetric waveguide can spatially separate up- and down-spins and locate one parity inside and the other outside the structure. Moreover, robustness against bending the waveguide and its application as an optical spin sorter are presented. Compared to previous reports on spatial engineering of local spins in photonic crystal waveguides, we achieved miniaturization of the entire footprint down to the subwavelength scale.

6.
Nano Lett ; 20(1): 592-598, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31855432

RESUMO

Nanoscale gaps between metals can strongly confine electromagnetic fields that enable efficient electromagnetic energy conversion and coupling to nanophotonic structures. In particular, the gap formed by depositing a metallic particle on a metallic substrate produces coupling of localized particle plasmons to propagating surface plasmon polaritons (SPPs). Understanding and controlling the phase of such coupling is essential for the design of devices relying on nanoparticles coupled through SPPs. Here we demonstrate the experimental visualization of the phase associated with the plasmonic field of metallic particle-surface composites through nanoscopically and spectroscopically resolved cathodoluminescence using a scanning transmission electron microscope. Specifically, we study the interference between the substrate transition radiation and the field resulting from out-coupling of SPP excitation, therefore giving rise to angle-, polarization-, and energy-dependent photon emission fringe patterns from which we extract phase information. Our methods should be readily applicable to more complex nanostructures, thus providing direct experimental insight into nanoplasmonic near-fields with potential applications in improving plasmon-based devices.

7.
J Chem Phys ; 152(2): 024705, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941311

RESUMO

Short range ordered (SRO) plasmonic nanohole arrays have a distinct surface plasmon polariton resonance in the visible region and exhibit an excellent sensing capability toward changes in the surrounding refractive index. While SRO and perfectly ordered plasmonic hole arrays have similar sensing properties, SRO arrays have clear advantages in fabrication, simplicity, and scalability. In this study, we use SRO gold nanoholes, which are subjected to pressure and temperature cycles, for vacuum and temperature sensing. The response of the transmission spectra to pressure changes in the range 10-3-105 Pa and temperature scans in the range 20-400 °C was recorded. Upon pressure cycling, a reversible response was observed. Upon initial temperature annealing, an irreversible blue shift in the resonance dip position was observed. Upon further temperature cycling, the resonance dip position shifts reversibly, with a notable red shift upon temperature increase. The results are discussed and interpreted based on possible molecular adsorption/desorption upon pressure cycling and in terms of the gold film's recrystallization, thermal expansion, and free electron density variations.

8.
J Chem Phys ; 152(7): 074707, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087626

RESUMO

Plasmonic nanoholes have attracted significant attention among nanoplasmonic devices, especially as biosensing platforms, where nanohole arrays can efficiently enhance and confine the electromagnetic field through surface plasmon polaritons, providing a sensitive detection. In nanohole arrays, the optical resonances are typically determined by the inter-hole distance or periodicity with respect to the surface plasmon wavelength. However, for short-range ordered (SRO) arrays, the inter-hole distance varies locally, so the plasmon resonance changes. In this study, we investigate the local resonance of SRO nanoholes using a cathodoluminescence technique and compare it with hexagonally ordered nanoholes. The cathodoluminescence photon maps and resonance peak analysis reveal that the electric fields are confined at the edges of holes and that their resonances are determined by inter-hole distances as well as by their distributions. This demonstrates the Anderson localization of the electromagnetic waves showing locally enhanced electromagnetic local density of states in SRO nanoholes.

9.
Phys Rev Lett ; 123(15): 150801, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702296

RESUMO

High-voltage transmission electron microscopes (HVTEMs), which can visualize internal structures of micron thick samples, intrinsically have large instrument sizes because of the static voltage isolation. In this Letter, we develop a compact HVTEM, employing a linear accelerator, a subpicosecond beam chopper, and a linear decelerator. 100 kV electrons initially accelerated by a static field are accelerated at radio frequency (rf) up to 500 kV, transmitting through the sample and finally rf decelerated down to 200 kV to be imaged through a 200 kV energy filter. 500 kV imaging, as well as subnanometer resolution at 200 kV, have been demonstrated.

10.
Opt Lett ; 40(19): 4468-71, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26421558

RESUMO

The influence of the impulsive mechanical energy and the contact geometrical parameters on stress-induced light emission of ZnS-based phosphors dispersed in polymeric matrix is investigated using modified impact test equipment. At a low to moderate energy region, luminescent pulses consist of two distinguishable peaks that can be assigned to a loading and unloading sequence, respectively. Transient characteristics are found to be independent of the external excitation. An increment of peak emission intensity with higher impact energy and smaller tip diameter indicates a significant relationship of mechanoluminescence to the geometry of contact. Intense emission deviating from the linearity and an absence of the secondary peak are suggested to be the consequence of fractoluminescence.

11.
Nano Lett ; 13(12): 6122-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188470

RESUMO

We introduce a novel optical biosensing platform that exploits the asymmetry of nanostructures embedded in nanocavities, termed nanomenhirs. Upon oblique illumination using plane polarized white light, two plasmonic resonances attributable to the bases and the axes of the nanomenhirs emerge; these are used for location-specific sensing of membrane-binding events. Numerical simulations of the near field distributions confirmed the experimental results. As a proof-of-concept, we present a model biosensing experiment that exploits the dual-sensing capability, the size selectivity offered by the sensor geometry, and the possibility to separately biochemically modify the nanomenhirs and the nanocavities for the specific binding of lipid membrane structures to the nanomenhirs.


Assuntos
Técnicas Biossensoriais , Lipídeos/química , Nanoestruturas/química , Ouro/química , Luz , Membranas/química , Ressonância de Plasmônio de Superfície
12.
Microscopy (Oxf) ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702889

RESUMO

We investigate a one-dimensional plasmonic crystal (1D PlC) using momentum-resolved electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) techniques, which are complementary in terms of available optical information. The PlC sample is fabricated from large aluminum grains through the focused ion beam (FIB) method. This approach allows curving nanostructures with high crystallinity, providing platforms for detailed analysis of plasmonic nanostructures using both EELS and CL. The momentum-resolved EELS visualizes dispersion curves outside the light cone, confirming the existence of the surface plasmon polaritons (SPP) and local modes, while the momentum-resolved CL mapping analysis identified these SPP and local modes. Such synergetic approach of two electron-beam techniques offers full insights into both radiative and non-radiative optical properties in plasmonic or photonic structures.

13.
ACS Photonics ; 11(8): 3323-3330, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39184185

RESUMO

Control of circularly polarized light (CPL) is important for next-generation optical communications as well as for investigating the optical properties of materials. In this study, we explore dielectric-sphere oligomers for chiral nanoantenna applications, leveraging the cathodoluminescence (CL) technique, which employs accelerated free electrons for excitation and allows mapping the optical response on the nanoscale. For a certain particle-dimers configuration, one of the spheres becomes responsible for the left-handed circular polarization of the emitted light, while right-handed circular polarization is selectively yielded when the other sphere is excited by the electron beam. Similar patterns are also observed in trimers. These phenomena are understood in terms of optical coupling between the electric and magnetic modes hosted by the dielectric spheres. Our research not only expands the understanding of CPL generation mechanisms in dielectric-sphere oligomer antennas but also underscores the potential of such structures in optical applications. We further highlight the utility of CL as a powerful analytical tool for investigating the optical properties of nanoscale structures as well as the potential of electron beams for light generation with switchable CPL parities.

14.
Phys Chem Chem Phys ; 15(13): 4656-65, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23440015

RESUMO

Nanostructured, just-percolated gold films were prepared by evaporation on bare glass. Annealing of the films at temperatures close to or higher than the softening temperature of the glass substrate induces morphological transformation to discrete Au islands and gradual embedding of the formed islands in the glass. The mechanism and kinetics of these processes are studied here using a combination of in situ high-temperature optical spectroscopy; ex situ characterization of the island shape by high-resolution scanning electron microscopy (HRSEM), atomic force microcopy (AFM) and cross-sectional transmission electron microscopy (TEM); and numerical simulations of transmission spectra using the Multiple Multipole Program (MMP) approach. It is shown that the morphological transformation of just-percolated, 10 nm (nominal thickness) Au films evaporated on glass and annealed at 600 °C, i.e., in the vicinity of the substrate glass transition temperature (Tg = 557 °C), proceeds via three processes exhibiting different time scales: (i) fast recrystallization and dewetting, leading to formation of single-crystalline islands (minutes); the initial spectrum characteristic of a continuous Au film is transformed to that of an island film, displaying a surface plasmon (SP) absorption band. (ii) Reshaping and faceting of the single-crystalline islands accompanied by formation of circumferential glass rims around them (first few hours); the overall optical response shows a blue shift of the SP band. (iii) Gradual island embedding in the glass substrate (tens of hours), seen as a characteristic red shift of the SP band. The influence of the annealing atmosphere (air, vacuum) on the embedding process is found to be minor. Numerical modeling of the extinction cross-section corresponding to the morphological transformations during island recrystallization and embedding is in qualitative agreement with the experimental data.

15.
Ultramicroscopy ; 251: 113759, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37245285

RESUMO

We developed a novel light optics system installed in a scanning transmission electron microscope (STEM) to introduce a focused light accurately adjusted at the electron beam irradiation position using a parabolic mirror. With a parabolic mirror covering both the upper and lower sides of the sample, the position and focus of the light beam can be evaluated by imaging the angular distribution of the transmitted light. By comparing the light image and the electron micrograph, the irradiation positions of the electron beam and the laser beam can be accurately adjusted to each other. The size of the focused light was confirmed to be within a few microns from the light Ronchigram, which is consistent with the simulated light spot size. The spot size and position alignment were further confirmed by laser-ablating only a targeted polystyrene particle without damaging the surrounding particles. When using a halogen lamp as the light source, this system allows investigating optical spectra in comparison with cathodoluminescence (CL) spectra at exactly the same location.

16.
ACS Photonics ; 10(5): 1434-1445, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215315

RESUMO

A spherical dielectric particle can sustain the so-called whispering-gallery modes (WGMs), which can be regarded as circulating electromagnetic waves, resulting in the spatial confinement of light inside the particle. Despite the wide adoption of optical WGMs as a major light confinement mechanism in salient practical applications, direct imaging of the mode fields is still lacking and only partially addressed by simple photography and simulation work. The present study comprehensively covers this research gap by demonstrating the nanoscale optical-field visualization of self-interference of light extracted from excited modes through experimentally obtained photon maps that directly portray the field distributions of the excited eigenmodes. To selectively choose the specific modes at a given light emission detection angle and resonance wavelength, we use cathodoluminescence-based scanning transmission electron microscopy supplemented with angle-, polarization-, and wavelength-resolved capabilities. Equipped with semi-analytical simulation tools, the internal field distributions of the whispering-gallery modes reveal that radiation emitted by a spherical resonator at a given resonance frequency is composed of the interference between multiple modes, with one or more of them being comparatively dominant, leading to a resulting distribution featuring complex patterns that explicitly depend on the detection angle and polarization. Direct visualization of the internal fields inside resonators enables a comprehensive understanding of WGMs that can shed light on the design of nanophotonic applications.

17.
Nanoscale Adv ; 5(18): 5115-5121, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705802

RESUMO

van der Waals (vdW) layered materials have attracted much attention because their physical properties can be controlled by varying the twist angle and layer composition. However, such twisted vdW assemblies are often prepared using mechanically exfoliated monolayer flakes with unintended shapes through a time-consuming search for such materials. Here, we report the rapid and dry fabrication of twisted multilayers using chemical vapor deposition (CVD) grown transition metal chalcogenide (TMDC) monolayers. By improving the adhesion of an acrylic resin stamp to the monolayers, the single crystals of various TMDC monolayers with desired grain size and density on a SiO2/Si substrate can be efficiently picked up. The present dry transfer process demonstrates the one-step fabrication of more than 100 twisted bilayers and the sequential stacking of a twisted 10-layer MoS2 single crystal. Furthermore, we also fabricated hBN-encapsulated TMDC monolayers and various twisted bilayers including MoSe2/MoS2, MoSe2/WSe2, and MoSe2/WS2. The interlayer interaction and quality of dry-transferred, CVD-grown TMDCs were characterized by using photoluminescence (PL), cathodoluminescence (CL) spectroscopy, and cross-sectional electron microscopy. The prominent PL peaks of interlayer excitons can be observed for MoSe2/MoS2 and MoSe2/WSe2 with small twist angles at room temperature. We also found that the optical spectra were locally modulated due to nanosized bubbles, which are formed by the presence of interface carbon impurities. The present findings indicate the widely applicable potential of the present method and enable an efficient search of the emergent optical and electrical properties of TMDC-based vdW heterostructures.

18.
Anal Bioanal Chem ; 402(5): 1773-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21947010

RESUMO

The enormous progress of nanotechnology during the last decade has made it possible to fabricate a great variety of nanostructures. On the nanoscale, metals exhibit special electrical and optical properties, which can be utilized for novel applications. In particular, plasmonic sensors including both the established technique of surface plasmon resonance and more recent nanoplasmonic sensors, have recently attracted much attention. However, some of the simplest and most successful sensors, such as the glucose biosensor, are based on electrical readout. In this review we describe the implementation of electrochemistry with plasmonic nanostructures for combined electrical and optical signal transduction. We highlight results from different types of metallic nanostructures such as nanoparticles, nanowires, nanoholes or simply films of nanoscale thickness. We briefly give an overview of their optical properties and discuss implementation of electrochemical methods. In particular, we review studies on how electrochemical potentials influence the plasmon resonances in different nanostructures, as this type of fundamental understanding is necessary for successful combination of the methods. Although several combined platforms exist, many are not yet in use as sensors partly because of the complicated effects from electrochemical potentials on plasmon resonances. Yet, there are clearly promising aspects of these sensor combinations and we conclude this review by discussing the advantages of synchronized electrical and optical readout, illustrating the versatility of these technologies.


Assuntos
Eletroquímica/instrumentação , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Eletroquímica/métodos
19.
Nano Lett ; 11(3): 1337-43, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21275409

RESUMO

We show how gold recrystallizes when under the influence of electrochemical potentials. This "cold annealing" occurs without charge transfer reactions and preserves nanoscale structural features. By performing the process on plasmonic nanostructures, grain growth is monitored noninvasively by optical spectroscopy. In this way, the influence from crystal structure on plasmon resonances can be investigated independently. Observed spectral changes are in excellent agreement with analytical models and changes in electron relaxation time and plasma frequency are calculated.


Assuntos
Eletroquímica/métodos , Nanoestruturas , Cristalização , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
20.
ACS Appl Mater Interfaces ; 14(30): 35020-35026, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857029

RESUMO

Metallic nanoparticles with localized surface plasmon resonance have suitable optical properties for various applications such as optical filters, efficient photocatalysts, and high-sensitivity sensors. Phase-separated plasmonic nanoparticles with heterogeneous metastructures exhibit unique resonance features with separate optical field enhancements in each phase and hot electron transfer across the interface. Hence, interface engineering is crucial, particularly for catalyst applications. In this study, we investigated the evolution of the interface at high temperatures during nanoparticle formation using the dewetting method. We selected a Ag-Cu binary alloy system as a representative case and observed the nanoparticles via in situ transmission electron microscopy using a dedicated specimen heating holder. In situ elemental mapping revealed that the initial as-deposited film, which was composed of core-shell structures with Ag cores and Cu shells, converted into phase-separated Janus nanoparticles through marbled structures. A major structural change was observed at approximately 200 °C, which was in agreement with optical measurements. These results confirmed that the optical properties and metastructures of the phase-separated nanoparticles could be tuned by selecting the appropriate temperature and duration of the heat treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA