Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(10): 2962-2970, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249618

RESUMO

PURPOSE: [18F]SF51 was previously found to have high binding affinity and selectivity for 18 kDa translocator protein (TSPO) in mouse brain. This study sought to assess the ability of [18F]SF51 to quantify TSPO in rhesus monkey brain. METHODS: Positron emission tomography (PET) imaging was performed in monkey brain (n = 3) at baseline and after pre-blockade with the TSPO ligands PK11195 and PBR28. TSPO binding was calculated as total distribution volume corrected for free parent fraction in plasma (VT/fP) using a two-tissue compartment model. Receptor occupancy and nondisplaceable uptake were determined via Lassen plot. Binding potential (BPND) was calculated as the ratio of specific binding to nondisplaceable uptake. Time stability of VT was used as an indirect probe to detect radiometabolite accumulation in the brain. In vivo and ex vivo experiments were performed in mice to determine the distribution of the radioligand. RESULTS: After [18F]SF51 injection, the concentration of brain radioactivity peaked at 2.0 standardized uptake value (SUV) at ~ 10 min and declined to 30% of the peak at 180 min. VT/fP at baseline was generally high (203 ± 15 mL· cm-3) and decreased by ~ 90% after blockade with PK11195. BPND of the whole brain was 7.6 ± 4.3. VT values reached levels similar to terminal 180-min values by 100 min and remained relatively stable thereafter with excellent identifiability (standard errors < 5%), suggesting that no significant radiometabolites accumulated in the brain. Ex vivo experiments in mouse brain showed that 96% of radioactivity was parent. No significant uptake was observed in the skull, suggesting a lack of defluorination in vivo. CONCLUSION: The results demonstrate that [18F]SF51 is an excellent radioligand that can quantify TSPO with a good ratio of specific to nondisplaceable uptake and has minimal radiometabolite accumulation in brain. Collectively, the results suggest that [18F]SF51 warrants further evaluation in humans.


Assuntos
Encéfalo , Receptores de GABA , Humanos , Camundongos , Animais , Receptores de GABA/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte/metabolismo , Ligação Proteica , Compostos Radiofarmacêuticos/metabolismo
2.
Sensors (Basel) ; 23(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37050795

RESUMO

Concept drift (CD) in data streaming scenarios such as networking intrusion detection systems (IDS) refers to the change in the statistical distribution of the data over time. There are five principal variants related to CD: incremental, gradual, recurrent, sudden, and blip. Genetic programming combiner (GPC) classification is an effective core candidate for data stream classification for IDS. However, its basic structure relies on the usage of traditional static machine learning models that receive onetime training, limiting its ability to handle CD. To address this issue, we propose an extended variant of the GPC using three main components. First, we replace existing classifiers with alternatives: online sequential extreme learning machine (OSELM), feature adaptive OSELM (FA-OSELM), and knowledge preservation OSELM (KP-OSELM). Second, we add two new components to the GPC, specifically, a data balancing and a classifier update. Third, the coordination between the sub-models produces three novel variants of the GPC: GPC-KOS for KA-OSELM; GPC-FOS for FA-OSELM; and GPC-OS for OSELM. This article presents the first data stream-based classification framework that provides novel strategies for handling CD variants. The experimental results demonstrate that both GPC-KOS and GPC-FOS outperform the traditional GPC and other state-of-the-art methods, and the transfer learning and memory features contribute to the effective handling of most types of CD. Moreover, the application of our incremental variants on real-world datasets (KDD Cup '99, CICIDS-2017, CSE-CIC-IDS-2018, and ISCX '12) demonstrate improved performance (GPC-FOS in connection with CSE-CIC-IDS-2018 and CICIDS-2017; GPC-KOS in connection with ISCX2012 and KDD Cup '99), with maximum accuracy rates of 100% and 98% by GPC-KOS and GPC-FOS, respectively. Additionally, our GPC variants do not show superior performance in handling blip drift.

3.
Glia ; 70(7): 1251-1266, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35244976

RESUMO

Reactive astrocytes at the border of damaged neuronal tissue organize into a barrier surrounding the fibrotic lesion core, separating this central region of inflammation and fibrosis from healthy tissue. Astrocytes are essential to form the border and for wound repair but interfere with neuronal regeneration. However, the mechanisms driving these astrocytes during central nervous system (CNS) disease are unknown. Here we show that blood-derived fibrinogen is enriched at the interface of lesion border-forming elongated astrocytes after cortical brain injury. Anticoagulant treatment depleting fibrinogen reduces astrocyte reactivity, extracellular matrix deposition and inflammation with no change in the spread of inflammation, whereas inhibiting fibrinogen conversion into fibrin did not significantly alter astrocyte reactivity, but changed the deposition of astrocyte extracellular matrix. RNA sequencing of fluorescence-activated cell sorting-isolated astrocytes of fibrinogen-depleted mice after cortical injury revealed repressed gene expression signatures associated with astrocyte reactivity, extracellular matrix deposition and immune-response regulation, as well as increased gene expression signatures associated with astrocyte metabolism and astrocyte-neuron communication. Systemic pharmacologic depletion of fibrinogen resulted in the absence of elongated, border-forming astrocytes and increased the survival of neurons in the lesion core after cortical injury. These results identify fibrinogen as a critical trigger for lesion border-forming astrocyte properties in CNS disease.


Assuntos
Astrócitos , Gliose , Animais , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Fibrinogênio/metabolismo , Gliose/patologia , Inflamação/metabolismo , Camundongos
4.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364188

RESUMO

Mayaro virus (MAYV) is an emerging arbovirus with an increasing circulation across the Americas. In the present study, we evaluated the potential antiviral activity of the following natural compounds against MAYV and other arboviruses: Sanguinarine, (R)-Shikonin, Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin. Sanguinarine and Shikonin showed significant cytotoxicity, whereas Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin were well tolerated in all the cell lines tested. Honokiol and α-Mangostin treatment protected Vero-E6 cells against MAYV-induced damage and resulted in a dose-dependent reduction in viral progeny yields for each of the MAYV strains and human cell lines assessed. These compounds also reduced MAYV viral RNA replication in HeLa cells. In addition, Honokiol and α-Mangostin disrupted MAYV infection at different stages of the virus life cycle. Moreover, Honokiol and α-Mangostin decreased Una, Chikungunya, and Zika viral titers and downmodulated the expression of E1 and nsP1 viral proteins from MAYV, Una, and Chikungunya. Finally, in Honokiol- and α-Mangostin-treated HeLa cells, we observed an upregulation in the expression of type I interferon and specific interferon-stimulated genes, including IFNα, IFNß, MxA, ISG15, OAS2, MDA-5, TNFα, and IL-1ß, which may promote an antiviral cellular state. Our results indicate that Honokiol and α-Mangostin present potential broad-spectrum activity against different arboviruses through different mechanisms.


Assuntos
Alphavirus , Arbovírus , Febre de Chikungunya , Infecção por Zika virus , Zika virus , Humanos , Células HeLa , Alphavirus/genética , Replicação Viral , Antivirais/farmacologia
5.
Entropy (Basel) ; 23(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34945956

RESUMO

In the past decade, rapid development in digital communication has led to prevalent use of digital images. More importantly, confidentiality issues have also come up recently due to the increase in digital image transmission across the Internet. Therefore, it is necessary to provide high imperceptibility and security to digitally transmitted images. In this paper, a novel blind digital image watermarking scheme is introduced tackling secured transmission of digital images, which provides a higher quality regarding both imperceptibility and robustness parameters. A block based hybrid IWT- SVD transform is implemented for robust transmission of digital images. To ensure high watermark security, the watermark is encrypted using a Pseudo random key which is generated adaptively from cover and watermark images. An encrypted watermark is embedded in randomly selected low entropy blocks to increase the security as well as imperceptibility. Embedding positions within the block are identified adaptively using a Blum-Blum-Shub Pseudo random generator. To ensure higher visual quality, Initial Scaling Factor (ISF) is chosen adaptively from a cover image using image range characteristics. ISF can be optimized using Nature Inspired Optimization (NIO) techniques for higher imperceptibility and robustness. Specifically, the ISF parameter is optimized by using three well-known and novel NIO-based algorithms such as Genetic Algorithms (GA), Artificial Bee Colony (ABC), and Firefly Optimization algorithm. Experiments were conducted for the proposed scheme in terms of imperceptibility, robustness, security, embedding rate, and computational time. Experimental results support higher effectiveness of the proposed scheme. Furthermore, performance comparison has been done with some of the existing state-of-the-art schemes which substantiates the improved performance of the proposed scheme.

6.
J Neuroinflammation ; 17(1): 140, 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32359360

RESUMO

BACKGROUND: Cyclooxygenase-2 (COX-2), which is rapidly upregulated by inflammation, is a key enzyme catalyzing the rate-limiting step in the synthesis of several inflammatory prostanoids. Successful positron emission tomography (PET) radioligand imaging of COX-2 in vivo could be a potentially powerful tool for assessing inflammatory response in the brain and periphery. To date, however, the development of PET radioligands for COX-2 has had limited success. METHODS: The novel PET tracer [11C]MC1 was used to examine COX-2 expression [1] in the brains of four rhesus macaques at baseline and after injection of the inflammogen lipopolysaccharide (LPS) into the right putamen, and [2] in the joints of two human participants with rheumatoid arthritis and two healthy individuals. In the primate study, two monkeys had one LPS injection, and two monkeys had a second injection 33 and 44 days, respectively, after the first LPS injection. As a comparator, COX-1 expression was measured using [11C]PS13. RESULTS: COX-2 binding, expressed as the ratio of specific to nondisplaceable uptake (BPND) of [11C]MC1, increased on day 1 post-LPS injection; no such increase in COX-1 expression, measured using [11C]PS13, was observed. The day after the second LPS injection, a brain lesion (~ 0.5 cm in diameter) with high COX-2 density and high BPND (1.8) was observed. Postmortem brain analysis at the gene transcript or protein level confirmed in vivo PET results. An incidental finding in an unrelated monkey found a line of COX-2 positivity along an incision in skull muscle, demonstrating that [11C]MC1 can localize inflammation peripheral to the brain. In patients with rheumatoid arthritis, [11C]MC1 successfully imaged upregulated COX-2 in the arthritic hand and shoulder and apparently in the brain. Uptake was blocked by celecoxib, a COX-2 preferential inhibitor. CONCLUSIONS: Taken together, these results indicate that [11C]MC1 can image and quantify COX-2 upregulation in both monkey brain after LPS-induced neuroinflammation and in human peripheral tissue with inflammation. TRIAL REGISTRATION: ClinicalTrials.gov NCT03912428. Registered April 11, 2019.


Assuntos
Ciclo-Oxigenase 2/análise , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Pirimidinas , Compostos Radiofarmacêuticos , Adulto , Animais , Artrite Reumatoide/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Macaca mulatta , Pessoa de Meia-Idade
7.
Eur J Nucl Med Mol Imaging ; 47(13): 3143-3151, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32399622

RESUMO

PURPOSE: This study assessed whether the newly developed PET radioligand [11C]PS13, which has shown excellent in vivo selectivity in previous animal studies, could be used to quantify constitutive levels of cyclooxygenase-1 (COX-1) in healthy human brain. METHODS: Brain test-retest scans with concurrent arterial blood samples were obtained in 10 healthy individuals. The one- and unconstrained two-tissue compartment models, as well as the Logan graphical analysis were compared, and test-retest reliability and time-stability of total distribution volume (VT) were assessed. Correlation analyses were conducted between brain regional VT and COX-1 transcript levels provided in the Allen Human Brain Atlas. RESULTS: In the brain, [11C]PS13 showed highest uptake in the hippocampus and occipital cortex. The pericentral cortex also showed relatively higher uptake compared with adjacent neocortices. The two-tissue compartment model showed the best fit in all the brain regions, and the results from the Logan graphical analysis were consistent with those from the two-tissue compartment model. VT values showed excellent test-retest variability (range 6.0-8.5%) and good reliability (intraclass correlation coefficient range 0.74-0.87). VT values also showed excellent time-stability in all brain regions, confirming that there was no radiometabolite accumulation and that shorter scans were still able to reliably measure VT. Significant correlation was observed between VT and COX-1 transcript levels (r = 0.82, P = 0.007), indicating that [11C]PS13 binding reflects actual COX-1 density in the human brain. CONCLUSIONS: These results from the first-in-human evaluation of the ability of [11C]PS13 to image COX-1 in the brain justifies extending the study to disease populations with neuroinflammation. CLINICAL TRIAL REGISTRATION: NCT03324646 at https://clinicaltrials.gov/ . Registered October 30, 2017. Retrospectively registered.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ciclo-Oxigenase 1/metabolismo , Humanos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
8.
Adv Exp Med Biol ; 1233: 263-277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274761

RESUMO

SUMO is a ubiquitin-like protein that covalently binds to lysine residues of target proteins and regulates many biological processes such as protein subcellular localization or stability, transcription, DNA repair, innate immunity, or antiviral defense. SUMO has a critical role in the signaling pathway governing type I interferon (IFN) production, and among the SUMOylation substrates are many IFN-induced proteins. The overall effect of IFN is increasing global SUMOylation, pointing to SUMO as part of the antiviral stress response. Viral agents have developed different mechanisms to counteract the antiviral activities exerted by SUMO, and some viruses have evolved to exploit the host SUMOylation machinery to modify their own proteins. The exploitation of SUMO has been mainly linked to nuclear replicating viruses due to the predominant nuclear localization of SUMO proteins and enzymes involved in SUMOylation. However, SUMOylation of numerous viral proteins encoded by RNA viruses replicating at the cytoplasm has been lately described. Whether nuclear localization of these viral proteins is required for their SUMOylation is unclear. Here, we summarize the studies on exploitation of SUMOylation by cytoplasmic RNA viruses and discuss about the requirement for nuclear localization of their proteins.


Assuntos
Citoplasma/virologia , Vírus de RNA/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Núcleo Celular/metabolismo , Humanos , Sumoilação
9.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516946

RESUMO

Purinergic receptors play a central role in the renal pathophysiology of angiotensin II-induced hypertension, since elevated ATP chronically activates P2X7 receptors in this model. The changes induced by the P2X antagonist Brilliant blue G (BBG) in glomerular hemodynamics and in tubulointerstitial inflammation resulting from angiotensin II infusion were studied. Rats received angiotensin II (435 ng·kg-1·min-1, 2 weeks) alone or in combination with BBG (50 mg/kg/day intraperitoneally). BBG did not modify hypertension (214.5 ± 1.4 vs. 212.7 ± 0.5 mmHg), but restored to near normal values afferent (7.03 ± 1.00 to 2.97 ± 0.27 dyn.s.cm-5) and efferent (2.62 ± 0.03 to 1.29 ± 0.09 dyn.s.cm-5) arteriolar resistances, glomerular plasma flow (79.23 ± 3.15 to 134.30 ± 1.11 nl/min), ultrafiltration coefficient (0.020 ± 0.002 to 0.036 ± 0.003 nl/min/mmHg) and single nephron glomerular filtration rate (22.28 ± 2.04 to 34.46 ± 1.54 nl/min). Angiotensin II induced overexpression of P2X7 receptors in renal tubular cells and in infiltrating T and B lymphocytes and macrophages. All inflammatory cells were increased by angiotensin II infusion and reduced by 20% to 50% (p < 0.05) by BBG administration. Increased IL-2, IL-6, TNFα, IL-1ß, IL-18 and overexpression of NLRP3 inflammasome were induced by angiotensin II and suppressed by BBG. These studies suggest that P2X7 receptor-mediated renal vasoconstriction, tubulointerstitial inflammation and activation of NLRP3 inflammasome are associated with angiotensin II-induced hypertension.


Assuntos
Angiotensina II/efeitos adversos , Suscetibilidade a Doenças , Hipertensão/etiologia , Hipertensão/metabolismo , Nefrite/complicações , Nefrite/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Pressão Arterial , Biópsia , Citocinas/metabolismo , Gerenciamento Clínico , Hipertensão/diagnóstico , Imunidade , Proteinúria/metabolismo , Punções , Ratos , Receptores Purinérgicos P2X7/genética
10.
Angew Chem Int Ed Engl ; 58(20): 6772-6775, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30919544

RESUMO

A facile synthetic procedure for the preparation of α-trifluoromethyl carboxylic acids and esters was achieved through multicomponent coupling reactions between gem-difluoroalkenes, cesium fluoride, and carbon dioxide. The products were generated in moderate to excellent yields, and the synthetic utility of this method was demonstrated through the preparation of trifluoromethylated versions of popular nonsteroidal anti-inflammatory drugs (NSAIDs).

11.
Molecules ; 23(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400142

RESUMO

Cyclooxygenase 2 (COX-2) is an inducible enzyme responsible for the conversion of arachidonic acid into the prostaglandins, PGG2 and PGH2. Expression of this enzyme increases in inflammation. Therefore, the development of probes for imaging COX-2 with positron emission tomography (PET) has gained interest because they could be useful for the study of inflammation in vivo, and for aiding anti-inflammatory drug development targeting COX-2. Nonetheless, effective PET radioligands are still lacking. We synthesized eleven COX-2 inhibitors based on a 2(4-methylsulfonylphenyl)pyrimidine core from which we selected three as prospective PET radioligands based on desirable factors, such as high inhibitory potency for COX-2, very low inhibitory potency for COX-1, moderate lipophilicity, and amenability to labeling with a positronemitter. These inhibitors, namely 6-methoxy-2-(4-(methylsulfonyl)phenyl-N-(thiophen-2ylmethyl)pyrimidin-4-amine (17), the 6-fluoromethyl analogue (20), and the 6-(2-fluoroethoxy) analogue (27), were labeled in useful yields and with high molar activities by treating the 6-hydroxy analogue (26) with [11C]iodomethane, [18F]2-fluorobromoethane, and [d2-18F]fluorobromomethane, respectively. [11C]17, [18F]20, and [d2-18F]27 were readily purified with HPLC and formulated for intravenous injection. These methods allow these radioligands to be produced for comparative evaluation as PET radioligands for measuring COX-2 in healthy rhesus monkey and for assessing their abilities to detect inflammation.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Tomografia por Emissão de Pósitrons , Pirimidinas/química , Compostos Radiofarmacêuticos , Animais , Radioisótopos de Carbono , Técnicas de Química Sintética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Descoberta de Drogas , Radioisótopos de Flúor , Humanos , Ligantes , Tomografia por Emissão de Pósitrons/métodos
12.
Am J Physiol Renal Physiol ; 313(1): F9-F19, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404593

RESUMO

Deleterious effects of purinergic P2X1 and P2X7 receptors (P2XRs) in ANG II-dependent hypertension include increased renal vascular resistance, and impaired autoregulation and pressure natriuresis. However, their specific effects on the determinants of glomerular hemodynamics remain incompletely delineated. To investigate the P2XR contributions to altered glomerular hemodynamics in hypertension, the effects of acute blockade of P2X1R, P2X7R, and P2X4R with NF449, A438079, and PSB12054, respectively, were evaluated in ANG II-infused rats (435 ng·kg-1·min-1). P2X1R or P2X7R blockade reduced afferent (6.85 ± 1.05 vs. 2.37 ± 0.20 dyn·s-1·cm-5) and efferent (2.85 ± 0.38 vs. 0.99 ± 0.07 dyn·s-1·cm-5) arteriolar resistances, leading to increases in glomerular plasma flow (75.82 ± 5.58 vs. 206.7 ± 16.38 nl/min), ultrafiltration coefficient (0.0198 ± 0.0024 vs. 0.0512 ± 0.0046 nl·min-1·mmHg-1), and single-nephron glomerular filtration rate (22.73 ± 2.02 vs. 51.56 ± 3.87 nl/min) to near normal values. Blockade of P2X4R did not elicit effects in hypertensive rats. In normotensive sham-operated rats, only the P2X1R antagonist caused an increase plasma flow and single-nephron glomerular filtration rate, whereas the P2X4R antagonist induced glomerular vasoconstriction that was consistent with evidence that P2X4R stimulation increases release of nitric oxide from endothelial cells. Mean arterial pressure remained unchanged in both hypertensive and normotensive groups. Western blot analysis showed overexpression of P2X1R, P2X7R, and P2X4R proteins in hypertensive rats. Whereas it has been generally assumed that the altered glomerular vascular resistances in ANG II hypertension are due to AT1 receptor-mediated vasoconstriction, these data indicate a predominant P2X1R and P2X7R control of glomerular hemodynamics in ANG II hypertension.


Assuntos
Angiotensina II , Hemodinâmica , Hipertensão/metabolismo , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Circulação Renal , Animais , Pressão Arterial , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hemodinâmica/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Glomérulos Renais/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Proteinúria/induzido quimicamente , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos Wistar , Receptores Purinérgicos P2X1/efeitos dos fármacos , Receptores Purinérgicos P2X4/efeitos dos fármacos , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Fluxo Plasmático Renal , Transdução de Sinais , Vasoconstrição
13.
Cell Biol Int ; 41(12): 1356-1366, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28884894

RESUMO

Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca2+ . This nucleotide also protected mitochondria from Hg2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine.


Assuntos
Citidina Difosfato Colina/farmacologia , Rim/efeitos dos fármacos , Mercúrio/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Creatina/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredução , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
14.
J Virol ; 87(2): 807-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115286

RESUMO

Posttranslational modification by SUMO provides functional flexibility to target proteins. Viruses interact extensively with the cellular SUMO modification system in order to improve their replication, and there are numerous examples of viral proteins that are SUMOylated. However, thus far the relevance of SUMOylation for rotavirus replication remains unexplored. In this study, we report that SUMOylation positively regulates rotavirus replication and viral protein production. We show that SUMO can be covalently conjugated to the viroplasm proteins VP1, VP2, NSP2, VP6, and NSP5. In addition, VP1, VP2, and NSP2 can also interact with SUMO in a noncovalent manner. We observed that an NSP5 SUMOylation mutant protein retains most of its activities, such as its interaction with VP1 and NSP2, the formation of viroplasm-like structures after the coexpression with NSP2, and the ability to complement in trans the lack of NSP5 in infected cells. However, this mutant is characterized by a high degree of phosphorylation and is impaired in the formation of viroplasm-like structures when coexpressed with VP2. These results reveal for the first time a positive role for SUMO modification in rotavirus replication, describe the SUMOylation of several viroplasm resident rotavirus proteins, and demonstrate a requirement for NSP5 SUMOylation in the production of viroplasm-like structures.


Assuntos
Interações Hospedeiro-Patógeno , Rotavirus/patogenicidade , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Humanos , Ligação Proteica
15.
Front Cell Neurosci ; 18: 1402479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962511

RESUMO

Wound healing of the central nervous system (CNS) is characterized by the classical phases of 'hemostasis', 'inflammation', 'proliferation', and 'remodeling'. Uncontrolled wound healing results in pathological scar formation hindering tissue remodeling and functional recovery in the CNS. Initial blood protein extravasation and activation of the coagulation cascade secure hemostasis in CNS diseases featuring openings in the blood-brain barrier. However, the relevance of blood-derived coagulation factors was overlooked for some time in CNS wound healing and scarring. Recent advancements in animal models and human tissue analysis implicate the blood-derived coagulation factor fibrinogen as a molecular link between vascular permeability and scar formation. In this perspective, we summarize the current understanding of how fibrinogen orchestrates scar formation and highlight fibrinogen-induced signaling pathways in diverse neural and non-neural cells that may contribute to scarring in CNS disease. We particularly highlight a role of fibrinogen in the formation of the lesion border between the healthy neural tissue and the fibrotic scar. Finally, we suggest novel therapeutic strategies via manipulating the fibrinogen-scar-forming cell interaction to improve functional outcomes.

16.
PLoS One ; 19(3): e0299545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466693

RESUMO

Musculoskeletal conditions affect an estimated 1.7 billion people worldwide, causing intense pain and disability. These conditions lead to 30 million emergency room visits yearly, and the numbers are only increasing. However, diagnosing musculoskeletal issues can be challenging, especially in emergencies where quick decisions are necessary. Deep learning (DL) has shown promise in various medical applications. However, previous methods had poor performance and a lack of transparency in detecting shoulder abnormalities on X-ray images due to a lack of training data and better representation of features. This often resulted in overfitting, poor generalisation, and potential bias in decision-making. To address these issues, a new trustworthy DL framework has been proposed to detect shoulder abnormalities (such as fractures, deformities, and arthritis) using X-ray images. The framework consists of two parts: same-domain transfer learning (TL) to mitigate imageNet mismatch and feature fusion to reduce error rates and improve trust in the final result. Same-domain TL involves training pre-trained models on a large number of labelled X-ray images from various body parts and fine-tuning them on the target dataset of shoulder X-ray images. Feature fusion combines the extracted features with seven DL models to train several ML classifiers. The proposed framework achieved an excellent accuracy rate of 99.2%, F1Score of 99.2%, and Cohen's kappa of 98.5%. Furthermore, the accuracy of the results was validated using three visualisation tools, including gradient-based class activation heat map (Grad CAM), activation visualisation, and locally interpretable model-independent explanations (LIME). The proposed framework outperformed previous DL methods and three orthopaedic surgeons invited to classify the test set, who obtained an average accuracy of 79.1%. The proposed framework has proven effective and robust, improving generalisation and increasing trust in the final results.


Assuntos
Artrite , Aprendizado Profundo , Doenças Musculoesqueléticas , Humanos , Ombro/diagnóstico por imagem , Raios X , Serviço Hospitalar de Emergência
17.
J Nucl Med ; 65(5): 788-793, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423785

RESUMO

Phosphodiesterase-4D (PDE4D) has emerged as a significant target for treating neuropsychiatric disorders, but no PET radioligand currently exists for robustly quantifying human brain PDE4D to assist biomedical research and drug discovery. A prior candidate PDE4D PET radioligand, namely [11C]T1650, failed in humans because of poor time stability of brain PDE4D-specific signal (indexed by total volume of distribution), likely due to radiometabolites accumulating in brain. Its nitro group was considered to be a source of the brain radiometabolites. Methods: We selected 5 high-affinity and selective PDE4D inhibitors, absent of a nitro group, from our prior structure-activity relationship study for evaluation as PET radioligands. Results: All 5 radioligands were labeled with 11C (half-time, 20.4 min) in useful yields and with high molar activity. All displayed sizable PDE4D-specific signals in rhesus monkey brain. Notably, [11C]JMJ-81 and [11C]JMJ-129 exhibited excellent time stability of signal (total volume of distribution). Furthermore, as an example, [11C]JMJ-81 was found to be free of radiometabolites in ex vivo monkey brain, affirming that this radioligand can provide robust quantification of brain PDE4D with PET. Conclusion: Given their high similarity in structures and metabolic profiles, both [11C]JMJ-81 and [11C]JMJ-129 warrant further evaluation in human subjects. [11C]JMJ-129 shows a higher PDE4D specific-to-nonspecific binding ratio and will be the first to be evaluated.


Assuntos
Encéfalo , Radioisótopos de Carbono , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Macaca mulatta , Tomografia por Emissão de Pósitrons , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ligantes , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Masculino , Marcação por Isótopo , Inibidores da Fosfodiesterase 4/química , Humanos
18.
Artif Intell Med ; 155: 102935, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39079201

RESUMO

Deep learning (DL) in orthopaedics has gained significant attention in recent years. Previous studies have shown that DL can be applied to a wide variety of orthopaedic tasks, including fracture detection, bone tumour diagnosis, implant recognition, and evaluation of osteoarthritis severity. The utilisation of DL is expected to increase, owing to its ability to present accurate diagnoses more efficiently than traditional methods in many scenarios. This reduces the time and cost of diagnosis for patients and orthopaedic surgeons. To our knowledge, no exclusive study has comprehensively reviewed all aspects of DL currently used in orthopaedic practice. This review addresses this knowledge gap using articles from Science Direct, Scopus, IEEE Xplore, and Web of Science between 2017 and 2023. The authors begin with the motivation for using DL in orthopaedics, including its ability to enhance diagnosis and treatment planning. The review then covers various applications of DL in orthopaedics, including fracture detection, detection of supraspinatus tears using MRI, osteoarthritis, prediction of types of arthroplasty implants, bone age assessment, and detection of joint-specific soft tissue disease. We also examine the challenges for implementing DL in orthopaedics, including the scarcity of data to train DL and the lack of interpretability, as well as possible solutions to these common pitfalls. Our work highlights the requirements to achieve trustworthiness in the outcomes generated by DL, including the need for accuracy, explainability, and fairness in the DL models. We pay particular attention to fusion techniques as one of the ways to increase trustworthiness, which have also been used to address the common multimodality in orthopaedics. Finally, we have reviewed the approval requirements set forth by the US Food and Drug Administration to enable the use of DL applications. As such, we aim to have this review function as a guide for researchers to develop a reliable DL application for orthopaedic tasks from scratch for use in the market.

19.
Am J Physiol Renal Physiol ; 304(7): F982-90, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23364804

RESUMO

Immune cell infiltration of the kidney is a constant feature in salt-sensitive hypertension (SSHTN). We evaluated the relationship between the renal inflammation and pressure natriuresis in the model of SSHTN that results from transient oral administration of N(ω)-nitro-L-arginine methyl ester (L-NAME). Pressure natriuresis was determined in Wistar rats that received 4 wk of a high-salt (4% NaCl) diet, starting 1 wk after stopping L-NAME, which was administered alone (SSHTN group, n = 17) or in association with mycophenolate mofetil (MMF; MMF group, n = 15). The administration of MMF in association with L-NAME is known to prevent the subsequent development of SSHTN. Control groups received a high (n = 12)- and normal (0.4%)-salt diet (n = 20). Rats with SSHTN had increased expression of inflammatory cytokines and oxidative stress. The severity of hypertension correlated directly (P < 0.0001) with the number of tubulointerstitial immune cells and angiotensin II-expressing cells. Pressure natriuresis was studied at renal arterial pressures (RAPs) of 90, 110, 130, and 150 mmHg. Glomerular filtration rate was similar and stable in all groups, and renal blood flow was decreased in the SSHTN group. Significantly decreased natriuresis (P < 0.05) was found in the SSHTN group at RAPs of 130 and 150 mmHg, and there was an inverse correlation (P < 0.01) between the urinary sodium excretion and the number of tubulointerstitial inflammatory cells (lymphocytes and macrophages) and cells expressing angiotensin II. We conclude that tubulointerstitial inflammation plays a key role in the impairment of pressure natriuresis that results in salt-dependent hypertension in this experimental model.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Hipertensão/induzido quimicamente , Túbulos Renais/patologia , Natriurese/fisiologia , Cloreto de Sódio na Dieta/administração & dosagem , Animais , Hipertensão/fisiopatologia , Túbulos Renais/citologia , Túbulos Renais/imunologia , Masculino , NG-Nitroarginina Metil Éster , Natriurese/efeitos dos fármacos , Nefrite/complicações , Nefrite/patologia , Ratos , Ratos Wistar , Cloreto de Sódio na Dieta/efeitos adversos
20.
ACS Pharmacol Transl Sci ; 6(4): 614-632, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37082755

RESUMO

[11C]CPPC has been advocated as a radioligand for colony-stimulating factor 1 receptor (CSF1R) with the potential for imaging neuroinflammation in human subjects with positron emission tomography (PET). This study sought to prepare fluoro analogs of CPPC with higher affinity to provide the potential for labeling with longer-lived fluorine-18 (t 1/2 = 109.8 min) and for delivery of higher CSF1R-specific PET signal in vivo. Seven fluorine-containing analogs of CPPC were prepared and four were found to have high inhibitory potency (IC50 in low to sub-nM range) and selectivity at CSF1R comparable with CPPC itself. One of these, a 4-fluoromethyl analog (Psa374), was investigated more deeply by labeling with carbon-11 (t 1/2 = 20.4 min) for PET studies in mouse and monkey. [11C]Psa374 showed high peak uptake in monkey brain but not in mouse brain. Pharmacological challenges revealed no CSF1R-specific binding in either species at baseline. [11C]CPPC also failed to show specific binding at baseline. Moreover, both [11C]Psa374 and [11C]CPPC showed brain efflux transporter substrate behavior in both species in vivo, although Psa374 did not show liability toward human efflux transporters in vitro. Further development of [11C]Psa374 in non-human primate models of neuroinflammation with demonstration of CSF1R-specific binding would be required to warrant the fluorine-18 labeling of Psa374 with a view to possible application in human subjects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA