Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 294(10): 3618-3633, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30591585

RESUMO

Individuals who are infected with HIV-1 accumulate damage to cells and tissues (e.g. neurons) that are not directly infected by the virus. These include changes known as HIV-associated neurodegenerative disorder (HAND), leading to the loss of neuronal functions, including synaptic long-term potentiation (LTP). Several mechanisms have been proposed for HAND, including direct effects of viral proteins such as the Tat protein. Searching for the mechanisms involved, we found here that HIV-1 Tat inhibits E2F transcription factor 3 (E2F3), CAMP-responsive element-binding protein (CREB), and brain-derived neurotropic factor (BDNF) by up-regulating the microRNA miR-34a. These changes rendered murine neurons dysfunctional by promoting neurite retraction, and we also demonstrate that E2F3 is a specific target of miR-34a. Interestingly, bioinformatics analysis revealed the presence of an E2F3-binding site within the CREB promoter, which we validated with ChIP and transient transfection assays. Of note, luciferase reporter assays revealed that E2F3 up-regulates CREB expression and that Tat interferes with this up-regulation. Further, we show that miR-34a inhibition or E2F3 overexpression neutralizes Tat's effects and restores normal distribution of the synaptic protein synaptophysin, confirming that Tat alters these factors, leading to neurite retraction inhibition. Our results suggest that E2F3 is a key player in neuronal functions and may represent a good target for preventing the development of HAND.


Assuntos
Fator de Transcrição E2F3/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , MicroRNAs/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Sinaptofisina/metabolismo
2.
Apoptosis ; 19(8): 1202-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872081

RESUMO

Involvement of the human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) protein in neuronal deregulation and in the development of HIV-1 associated neurocognitive disorders (HAND) has been amply explored; however the mechanisms involved remain unclear. In search for the mechanisms, we demonstrated that Tat deregulates neuronal functions through a pathway that involved p73 and p53 pathway. We showed that Tat uses microRNA-196a (miR-196a) to deregulate the p73 pathway. Further, we found that the Abelson murine leukemia (c-Abl) phosphorylates p73 on tyrosine residue 99 (Tyr-99) in Tat-treated cells. Interestingly, Tat lost its ability to promote accumulation and phosphorylation of p73 in the presence of miR-196a mimic. Interestingly, accumulation of p73 did not lead to neuronal cell death by apoptosis as obtained by cell viability assay. Western blot analysis using antibodies directed against serine residues 807 and 811 of retinoblastoma (Rb) protein was also used to validate our data regarding lack of cell death. Hyperphosphorylation of RB (S807/811) is an indication of cell neuronal viability. These results highlight the key role played by p73 and microRNA in Tat-treated neurons leading to their deregulation and it deciphers mechanistically one of the pathways used by Tat to cause neuronal dysfunction that contributes to the development of HAND.


Assuntos
Transtornos Cognitivos/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , MicroRNAs/metabolismo , Animais , Apoptose , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/virologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/complicações , Infecções por HIV/virologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
3.
CNS Neurosci Ther ; 29(1): 365-377, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419337

RESUMO

INTRODUCTION: Mitochondrial-associated ER membranes (MAMs) control many cellular functions, including calcium and lipid exchange, intracellular trafficking, and mitochondrial biogenesis. The disruption of these functions contributes to neurocognitive disorders, such as spatial memory impairment and premature brain aging. Using neuronal cells, we demonstrated that HIV-1 Tat protein deregulates the mitochondria. METHODS& RESULTS: To determine the mechanisms, we used a neuronal cell line and showed that Tat-induced changes in expression and interactions of both MAM-associated proteins and MAM tethering proteins. The addition of HIV-1 Tat protein alters expression levels of PTPIP51 and VAPB proteins in the MAM fraction but not the whole cell. Phosphorylation of PTPIP51 protein regulates its subcellular localization and function. We demonstrated that the Tat protein promotes PTPIP51 phosphorylation on tyrosine residues and prevents its binding to VAPB. Treatment of the cells with a kinase inhibitor restores the PTPIP51-VAPB interaction and overcomes the effect of Tat. CONCLUSION: These results suggest that Tat disrupts the MAM, through the induction of PTPIP51 phosphorylation, leading to ROS accumulation, mitochondrial stress, and altered movement. Hence, we concluded that interfering in the MAM-associated cellular pathways contributes to spatial memory impairment and premature brain aging often observed in HIV-1-infected patients.


Assuntos
HIV-1 , Humanos , Encéfalo/metabolismo , Produtos do Gene tat/metabolismo , Produtos do Gene tat/farmacologia , HIV-1/metabolismo , Mitocôndrias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/farmacologia , Retículo Endoplasmático/metabolismo
4.
Mitochondrion ; 70: 31-40, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925028

RESUMO

For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.


Assuntos
Infecções por HIV , HIV-1 , MicroRNAs , Humanos , HIV-1/metabolismo , Calcineurina/metabolismo , Calcineurina/farmacologia , Encéfalo/metabolismo , Morte Celular , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Viruses ; 14(3)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35337009

RESUMO

Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.


Assuntos
Neoplasias , Vírus , Metabolismo Energético , Glicólise , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Replicação Viral , Vírus/genética
6.
Viruses ; 14(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35632725

RESUMO

Clinical studies indicate that patients infected with SARS-CoV-2 develop hyperinflammation, which correlates with increased mortality. The SARS-CoV-2/COVID-19-dependent inflammation is thought to occur via increased cytokine production and hyperactivity of RAGE in several cell types, a phenomenon observed for other disorders and diseases. Metabolic reprogramming has been shown to contribute to inflammation and is considered a hallmark of cancer, neurodegenerative diseases, and viral infections. Malfunctioning glycolysis, which normally aims to convert glucose into pyruvate, leads to the accumulation of advanced glycation end products (AGEs). Being aberrantly generated, AGEs then bind to their receptor, RAGE, and activate several pro-inflammatory genes, such as IL-1b and IL-6, thus, increasing hypoxia and inducing senescence. Using the lung epithelial cell (BEAS-2B) line, we demonstrated that SARS-CoV-2 proteins reprogram the cellular metabolism and increase pyruvate kinase muscle isoform 2 (PKM2). This deregulation promotes the accumulation of AGEs and senescence induction. We showed the ability of the PKM2 stabilizer, Tepp-46, to reverse the observed glycolysis changes/alterations and restore this essential metabolic process.


Assuntos
COVID-19 , Pneumonia , Humanos , Inflamação , Piridazinas , Pirróis , SARS-CoV-2
7.
Front Cell Neurosci ; 16: 812887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418836

RESUMO

A significant number of patients infected with HIV-1 suffer from HIV-associated neurocognitive disorders (HAND) such as spatial memory impairments and learning disabilities (SMI-LD). SMI-LD is also observed in patients using combination antiretroviral therapy (cART). Our lab has demonstrated that the HIV-1 protein, gp120, promotes SMI-LD by altering mitochondrial functions and energy production. We have investigated cellular processes upstream of the mitochondrial functions and discovered that gp120 causes metabolic reprogramming. Effectively, the addition of gp120 protein to neuronal cells disrupted the glycolysis pathway at the pyruvate level. Looking for the players involved, we found that gp120 promotes increased expression of polypyrimidine tract binding protein 1 (PTBP1), causing the splicing of pyruvate kinase M (PKM) into PKM1 and PKM2. We have also shown that these events lead to the accumulation of advanced glycation end products (AGEs) and prevent the cleavage of pro-brain-derived neurotrophic factor (pro-BDNF) protein into mature brain-derived neurotrophic factor (BDNF). The accumulation of proBDNF results in signaling that increases the expression of the inducible cAMP early repressor (ICER) protein which then occupies the cAMP response element (CRE)-binding sites within the BDNF promoters II and IV, thus altering normal synaptic plasticity. We reversed these events by adding Tepp-46, which stabilizes the tetrameric form of PKM2. Therefore, we concluded that gp120 reprograms cellular metabolism, causing changes linked to disrupted memory in HIV-infected patients and that preventing the disruption of the metabolism presents a potential cure against HAND progression.

8.
Front Aging Neurosci ; 14: 811481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615594

RESUMO

HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.

9.
RNA Biol ; 8(2): 325-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21368586

RESUMO

HIV-1 pre-mRNA splicing depends upon 4 donor and 8 acceptor sites, which are used in combination to produce more than 40 different mRNAs. The acceptor site A7 plays an essential role for tat and rev mRNA production. The SLS2-A7 stem-loop structure containing site A7 was also proposed to modulate HIV-1 RNA export by the Rev protein. To further characterize nuclear factors involved in these processes, we purified RNP complexes formed by incubation of SLS2-A7 RNA transcripts in HeLa cell nuclear extracts by affinity chromatography and identified 33 associated proteins by nanoLC-MS/MS. By UV cross-linking, immunoselection and EMSA, we showed that, in addition to the well-known hnRNP A1 inhibitor of site A7, nucleolin, hnRNP H and hnRNP K interact directly with SLS2-A7 RNA. Nucleolin binds to a cluster of successive canonical NRE motifs in SLS2-A7 RNA, which is unique in HIV-1 RNA. Proteins hnRNP A1 and hnRNP K bind synergistically to SLS2-A7 RNA and both have a negative effect on site A7 activity. By the use of a plasmid expressing a truncated version of HIV-1 RNA, we showed a strong effect of the overexpression of hnRNP K in HeLa cells on HIV-1 alternative splicing. As a consequence, production of the Nef protein was strongly reduced. Interestingly also, many proteins identified in our proteomic analysis are known to modulate either the Rev activity or other mechanisms required for HIV-1 multiplication and several of them seem to be recruited by hnRNP K, suggesting that hnRNP K plays an important role for HIV-1 biology.


Assuntos
Produtos do Gene rev/metabolismo , HIV-1/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Splicing de RNA , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Processamento Alternativo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Éxons , Regulação Viral da Expressão Gênica , Produtos do Gene rev/genética , HIV-1/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Fosfoproteínas/metabolismo , Ligação Proteica , Precursores de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , RNA Viral/ultraestrutura , Proteínas de Ligação a RNA/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Nucleolina
10.
Methods Mol Biol ; 2311: 9-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033074

RESUMO

The use of primary mammalian neurons derived from embryonic central nervous system tissue is limited by the fact that once terminally differentiated into mature neurons, the cells can no longer be propagated. Transformed neuronal-like cell lines can be used in vitro to overcome this limitation. However, several caveats exist when utilizing cells derived from malignant tumors. In this context, the popular SH-SY5Y neuroblastoma cell line and its use in in vitro systems is described. Originally derived from a metastatic bone tumor biopsy, SH-SY5Y (ATCC® CRL-2266™) cells are a subline of the parental line SK-N-SH (ATCC® HTB-11™). SK-N-SH were subcloned three times; first to SH-SY, then to SH-SY5, and finally to SH-SY5Y. SH-SY5Y were deposited to the ATCC® in 1970 by June L. Biedler. Three important characteristics of SH-SY5Y cells should be considered when using these cells in in vitro studies. First, cultures include both adherent and floating cells, both types of which are viable. Few studies address the biological significance of the adherent versus floating phenotypes, but most reported studies utilize adherent populations and discard the floating cells during media changes. Second, early studies by Biedler's group indicated that the parental differentiated SK-N-SH cells contained two morphologically distinct phenotypes: neuroblast-like cells and epithelial-like cells (Ross et al., J Natl Cancer Inst 71(4):741-747, 1983). These two phenotypes may correspond to the "N" and "S" types described in later studies in SH-SY5Y by Encinas et al. (J Neurochem 75(3):991-1003, 2000). Cells with neuroblast-like morphology are positive for tyrosine hydroxylase (TH) and dopamine-ß-hydroxylase characteristic of catecholaminergic neurons, whereas the epithelial-like counterpart cells lacked these enzymatic activities (Ross et al., J Natl Cancer Inst 71(4):741-747, 1983). Third, SH-SY5Y cells can be differentiated to a more mature neuron-like phenotype that is characterized by neuronal markers. There are several methods to differentiate SH-SY5Y cells and are mentioned below. Retinoic acid is the most commonly used means for differentiation and will be addressed in detail.


Assuntos
Neurobiologia , Neuroblastoma/patologia , Neurogênese , Neurônios/patologia , Biomarcadores/metabolismo , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Criopreservação , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Tretinoína/farmacologia
11.
J Neurol ; 268(6): 2013-2022, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32870373

RESUMO

SARS-CoV-2, which led to the 2020 global pandemic, is responsible for the Coronavirus Disease 2019 (COVID-19), a respiratory illness, and presents a tropism for the central nervous system. Like most members of this family, the virus is composed of structural and non-structural proteins (NSPs). The non-structural proteins are critical elements of the replication and transcription complex (RTC), as well as immune system evasion. Through hijacking the endoplasmic reticulum (ER) membrane, NSPs help the virus establish the RTC, inducing ER stress after membrane rearrangement and causing severe neuronal disturbance. In this review, we focus on the role of Nsp3, 4, and 6 in intracellular membrane rearrangement and evaluate the potential disruption of the central nervous system and the neurodegeneration which it could trigger. Studies of these NSPs will not only bring to light their specific role in viral infection but also facilitate the discovery of novel targeted drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Proteínas , Replicação Viral
12.
Autophagy ; 17(7): 1768-1782, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33890542

RESUMO

Despite the promising therapeutic effects of combinatory antiretroviral therapy (cART), 20% to 30% of HIV/AIDS patients living with long term infection still exhibit related cognitive and motor disorders. Clinical studies in HIV-infected patients revealed evidence of basal ganglia dysfunction, tremors, fine motor movement deficits, gait, balance, and increased risk of falls. Among older HIV+ adults, the frequency of cases with SNCA/α-synuclein staining is higher than in older healthy persons and may predict an increased risk of developing a neurodegenerative disease. The accumulation of SNCA aggregates known as Lewy Bodies is widely described to be directly linked to motor dysfunction. These aggregates are naturally removed by Macroautophagy/autophagy, a cellular housekeeping mechanism, that can be disturbed by HIV-1. The molecular mechanisms involved in linking HIV-1 proteins and autophagy remain mostly unclear and necessitates further exploration. We showed that HIV-1 Vpr protein triggers the accumulation of SNCA in neurons after decreasing lysosomal acidification, deregulating lysosome positioning, and the expression levels of several proteins involved in lysosomal maturation. Viruses and retroviruses such as HIV-1 are known to manipulate autophagy in order to use it for their replication while blocking the degradative final step, which could destroy the virus itself. Our study highlights how the suppression of neuronal autophagy by HIV-1 Vpr is a mechanism leading to toxic protein aggregation and neurodegeneration.Abbreviations: BLOC1: Biogenesis of Lysosome-related Organelles Complex 1; CART: combinatory antiretroviral therapy; CVB: coxsackievirus; DAPI: 4',6-diamidino-2-phenylindole; DENV: dengue virus; GFP: green fluorescent protein; HCV: hepatitis C virus; HCMV: human cytomegalovirus; HIV: human immunodeficiency virus; Env: HIV-1 envelope glycoproteins; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; VSV: Indiana vesiculovirus; LTR: Long Terminal Repeat; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MLBs: multilamellar bodies; RIPA: Radioimmunoprecipitation assay buffer; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; Tat: transactivator of TAR; TEM: transmission electron microscope; Vpr: Viral protein R.


Assuntos
Complexo AIDS Demência/etiologia , Lisossomos/virologia , Neurônios/virologia , alfa-Sinucleína/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Animais , Autofagossomos/virologia , Western Blotting , Encéfalo/patologia , Encéfalo/virologia , Imunofluorescência , HIV-1 , Humanos , Lisossomos/fisiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Neurônios/metabolismo , Neurônios/fisiologia
13.
Ann N Y Acad Sci ; 1479(1): 108-121, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32374444

RESUMO

The aim of the present study was to determine whether methylene blue (MB) could directly oppose the neurological toxicity of a lethal cyanide (CN) intoxication. KCN, infused at the rate of 0.375 mg/kg/min intravenously, produced 100% lethality within 15 min in unanaesthetized rats (n = 12). MB at 10 (n = 5) or 20 mg/kg (n = 5), administered 3 min into CN infusion, allowed all animals to survive with no sequelae. No apnea and gasping were observed at 20 mg/kg MB (P < 0.001). The onset of coma was also significantly delayed and recovery from coma was shortened in a dose-dependent manner (median of 359 and 737 seconds, respectively, at 20 and 10 mg/kg). At 4 mg/kg MB (n = 5), all animals presented faster onset of coma and apnea and a longer period of recovery than at the highest doses (median 1344 seconds, P < 0.001). MB reversed NaCN-induced resting membrane potential depolarization and action potential depression in primary cultures of human fetal neurons intoxicated with CN. MB restored calcium homeostasis in the CN-intoxicated human SH-SY5Y neuroblastoma cell line. We conclude that MB mitigates the neuronal toxicity of CN in a dose-dependent manner, preventing the lethal depression of respiratory medullary neurons and fatal outcome.


Assuntos
Antídotos/farmacologia , Azul de Metileno/farmacologia , Neurônios , Síndromes Neurotóxicas , Cianeto de Potássio/toxicidade , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/prevenção & controle , Ratos , Ratos Sprague-Dawley
14.
AIDS Rev ; 21(2): 76-83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31332398

RESUMO

With the introduction of combinatory antiretroviral therapy, patients infected with human immunodeficiency virus type 1 (HIV-1) can live much longer than before. However, the identification of HIV-associated neurocognitive disorder (HAND), especially HIV-associated dementia in 15-20% of patients infected with HIV-1, indicates additional complexity. These disorders turn out to be subtype dependent. Recently, many studies are ongoing trying to understand how the virus induces neuronal injury which could lead to neurological dysfunction. Most of these studies are focusing on the HIV-1 release of proteins such as Tat. However, the exact role of these proteins and their involvement in neuronal degeneration remains unidentified; this is especially true since viral proteins from different HIV-1 subtypes differ in their ability to cause neuronal damage. This review describes the role of different HIV-1 subtypes, identifies probable pathways involved in neuronal damage, the contribution of different HIV-1 subtypes to the progression of HAND, and potential treatments for HAND.


Assuntos
Complexo AIDS Demência/epidemiologia , Genótipo , Infecções por HIV/complicações , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/patogenicidade , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos
15.
Cell Cycle ; 18(2): 130-142, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563405

RESUMO

Non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. Lung cancer is the most frequent non-AIDS-defining malignancies in HIV-infected patients. The mechanism of the increased risk for lung cancer in HIV-1 patients is poorly understood. HIV-1 Nef protein has been suggested to be one of the key players in HIV-related lung disease. In here, we showed the involvement of Nef protein in cell modifications such as fibroblasts (IMR-90) and normal (BEAS-2B) or cancerous (A549) epithelial cells. We demonstrated that Nef protein reprograms initial stages of lung cancer (e.g. changes in the metabolism, improved cell survival and invasion, increase the angiogenesis factor VEGF). Additionally, we showed that Nef is provoking a global decrease of mature miRNA and a decrease of DICER1 and AGO expression in lung cells. MiRNAs play a crucial role in cell signaling and homeostasis, functioning as oncogenes or tumor suppressors, and their dysregulation can contribute to the tumorigenic process. These results showed that HIV-1 Nef protein is directly involved in preventing cell death and contributes to tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/virologia , Proliferação de Células , Infecções por HIV/virologia , HIV-1/fisiologia , Neoplasias Pulmonares/virologia , MicroRNAs/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Células A549 , Proteínas Argonautas/metabolismo , Autofagia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Sobrevivência Celular , RNA Helicases DEAD-box/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mitocôndrias/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease III/metabolismo , Transfecção , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
16.
Neuropharmacology ; 117: 364-375, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28212984

RESUMO

Disruption of mitochondria axonal transport, essential for the maintenance of synaptic and neuronal integrity and function, has been identified in neurodegenerative diseases. Whether HIV-1 viral proteins affect mitochondria axonal transport is unknown, albeit HIV-associated neurocognitive disorders occur in around half of the patients living with HIV. Therefore, we sought to examine the effect of HIV-1 viral protein R (Vpr) on mitochondria axonal transport. Using mice primary neuronal cultures, we demonstrated that 4-day Vpr treatment reduced the ratio of moving mitochondria associated with (i) less energy (ATP) supply, (ii) reduction in Miro-1 and (iii) increase of α-synuclein which led to loss of microtubule stability as demonstrated by inconsecutive distribution of acetylated α-tubulin along the axons. Interestingly, the effect of Vpr on mitochondria axonal transport was partially restored in the presence of bongkrekic acid, a compound that negatively affected the Vpr-adenine nucleotide translocator (ANT) interaction and totally restored the ATP level in neurons. This indicated Vpr impaired mitochondria axonal transport partially related to its interaction with ANT. The above effect of Vpr was similar to the data obtained from hippocampal tissues isolated from 18-month-old aging mice compared to 5-month-old mice. In accord with previous clinical findings that HIV infection prematurely ages the brain and increases the susceptibility to HAND, we found that Vpr induced aging markers in neurons. Thus, we concluded that instead of causing cell death, low concentration of HIV-1 Vpr altered neuronal function related with inhibition of mitochondria axonal transport which might contribute to the accelerated neuronal aging.


Assuntos
Transporte Axonal/fisiologia , Senescência Celular/fisiologia , HIV-1 , Mitocôndrias/metabolismo , Neurônios/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Axonal/efeitos dos fármacos , Ácido Bongcréquico/farmacologia , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/virologia , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/virologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/virologia , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , alfa-Sinucleína/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
17.
Elife ; 62017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28124973

RESUMO

Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bainha de Mielina/metabolismo , Fosfoproteínas/metabolismo , Células de Schwann/fisiologia , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Camundongos , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA