Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Enzymol ; 701: 47-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025580

RESUMO

Many membrane proteins are sensitive to their local lipid environment. As structural methods for membrane proteins have improved, there is growing evidence of direct, specific binding of lipids to protein surfaces. Unfortunately the workhorse of understanding protein-small molecule interactions, the binding affinity for a given site, is experimentally inaccessible for these systems. Coarse-grained molecular dynamics simulations can be used to bridge this gap, and are relatively straightforward to learn. Such simulations allow users to observe spontaneous binding of lipids to membrane proteins and quantify localized densities of individual lipids or lipid fragments. In this chapter we outline a protocol for extracting binding affinities from these localized distributions, known as the "density threshold affinity." The density threshold affinity uses an adaptive and flexible definition of site occupancy that alleviates the need to distinguish between "bound'' lipids and bulk lipids that are simply diffusing through the site. Furthermore, the method allows "bead-level" resolution that is suitable for the case where lipids share binding sites, and circumvents ambiguities about a relevant reference state. This approach provides a convenient and straightforward method for comparing affinities of a single lipid species for multiple sites, multiple lipids for a single site, and/or a single lipid species modeled using multiple forcefields.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Sítios de Ligação , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos/química
2.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38293114

RESUMO

Motivation: Clusters of hydrophobic residues are known to promote structured protein stability and drive protein aggregation. Recent work has shown that identifying contiguous hydrophobic residue clusters (termed "blobs") has proven useful in both intrinsically disordered protein (IDP) simulation and human genome studies. However, a graphical interface was unavailable. Results: Here, we present the blobulator: an interactive and intuitive web interface to detect intrinsic modularity in any protein sequence based on hydrophobicity. We demonstrate three use cases of the blobulator and show how identifying blobs with biologically relevant parameters provides useful information about a globular protein, two orthologous membrane proteins, and an IDP. Other potential applications are discussed, including: predicting protein segments with critical roles in tertiary interactions, providing a definition of local order and disorder with clear edges, and aiding in predicting protein features from sequence. Availability: The blobulator GUI can be found at www.blobulator.branniganlab.org, and the source code with pip installable command line tool can be found on GitHub at www.GitHub.com/BranniganLab/blobulator.

3.
Curr Top Med Chem ; 22(8): 686-698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139798

RESUMO

An urgent need exists for a rapid, cost-effective, facile, and reliable nucleic acid assay for mass screening to control and prevent the spread of emerging pandemic diseases. This urgent need is not fully met by current diagnostic tools. In this review, we summarize the current state-of-the-art research in novel nucleic acid amplification and detection that could be applied to point-of-care (POC) diagnosis and mass screening of diseases. The critical technological breakthroughs will be discussed for their advantages and disadvantages. Finally, we will discuss the future challenges of developing nucleic acid-based POC diagnosis.


Assuntos
Ácidos Nucleicos , Técnicas de Amplificação de Ácido Nucleico , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito
4.
Nat Commun ; 13(1): 7017, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36385237

RESUMO

Pentameric ligand-gated ion channels (pLGICs) mediate synaptic transmission and are sensitive to their lipid environment. The mechanism of phospholipid modulation of any pLGIC is not well understood. We demonstrate that the model pLGIC, ELIC (Erwinia ligand-gated ion channel), is positively modulated by the anionic phospholipid, phosphatidylglycerol, from the outer leaflet of the membrane. To explore the mechanism of phosphatidylglycerol modulation, we determine a structure of ELIC in an open-channel conformation. The structure shows a bound phospholipid in an outer leaflet site, and structural changes in the phospholipid binding site unique to the open-channel. In combination with streamlined alchemical free energy perturbation calculations and functional measurements in asymmetric liposomes, the data support a mechanism by which an anionic phospholipid stabilizes the activated, open-channel state of a pLGIC by specific, state-dependent binding to this site.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Fosfolipídeos , Sítios de Ligação , Fosfatidilgliceróis , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA