Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genome Res ; 31(12): 2327-2339, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815311

RESUMO

Chromatin accessibility states that influence gene expression and other nuclear processes can be altered in disease. The constellation of transcription factors and chromatin regulatory complexes in cells results in characteristic patterns of chromatin accessibility. The study of these patterns in tissues has been limited because existing chromatin accessibility assays are ineffective for archival formalin-fixed, paraffin-embedded (FFPE) tissues. We have developed a method to efficiently extract intact chromatin from archival tissue via enhanced cavitation with a nanodroplet reagent consisting of a lipid shell with a liquid perfluorocarbon core. Inclusion of nanodroplets during the extraction of chromatin from FFPE tissues enhances the recovery of intact accessible and nucleosome-bound chromatin. We show that the addition of nanodroplets to the chromatin accessibility assay formaldehyde-assisted isolation of regulatory elements (FAIRE), does not affect the accessible chromatin signal. Applying the technique to FFPE human tumor xenografts, we identified tumor-relevant regions of accessible chromatin shared with those identified in primary tumors. Further, we deconvoluted non-tumor signal to identify cellular components of the tumor microenvironment. Incorporation of this method of enhanced cavitation into FAIRE offers the potential for extending chromatin accessibility to clinical diagnosis and personalized medicine, while also enabling the exploration of gene regulatory mechanisms in archival samples.

2.
Nanomedicine ; 13(2): 471-482, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27720926

RESUMO

The mononuclear phagocyte system (MPS) has previously been shown to significantly affect the clearance, tumor delivery, and efficacy of nanoparticles (NPs). This study profiled MPS cell infiltration in murine preclinical tumor models and evaluated how these differences may affect tumor disposition of PEGylated liposomal doxorubicin (PLD) in models sensitive and resistant to PLD. Significant differences in MPS presence existed between tumor types (e.g. ovarian versus endometrial), cell lines within the same tumor type, and location of tumor implantation (i.e. flank versus orthotopic xenografts). Further, the differences in MPS presence of SKOV-3 ovarian and HEC1A endometrial orthotopic cancer models may account for the 2.6-fold greater PLD tumor exposure in SKOV-3, despite similar plasma, liver and spleen exposures. These findings suggest that profiling the presence of MPS cells within and between tumor types is important in tumor model selection and in tumor types and patients likely to respond to NP treatment.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacologia , Macrófagos/efeitos dos fármacos , Polietilenoglicóis , Animais , Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Humanos , Camundongos , Modelos Biológicos , Nanopartículas , Neoplasias/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fosfolipídeos/uso terapêutico
3.
Nanomedicine ; 12(7): 2007-2017, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27288666

RESUMO

Nanoparticles (NP) including liposomes are cleared by phagocytes of the mononuclear phagocyte system. High inter-patient variability in pharmacokinetics of PEGylated liposomal doxorubicin (PLD) has been reported. We hypothesized that genetic factors may be associated with the variable disposition of PLD. We evaluated plasma and tissue disposition of doxorubicin after administration of PLD at 6mg/kg IV ×1 via tail vein in 23 different male inbred mouse strains. An approximately 13-fold difference in plasma clearance of PLD was observed among inbred strains. We identified a correlation between strain-specific differences in PLD clearance and genetic variation within a genomic region encoding GULP1 (PTB domain containing engulfment adapter 1) protein using haplotype associated mapping and the efficient mixed-model association algorithms. Our results also show that Gulp1 expression in adipose tissue was associated with PLD disposition in plasma. Our findings suggest that genetic variants may be associated with inter-individual pharmacokinetic differences in NP clearance.


Assuntos
Doxorrubicina , Nanopartículas , Proteínas Adaptadoras de Transdução de Sinal , Animais , Humanos , Cinética , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos , Variantes Farmacogenômicos , Polietilenoglicóis
4.
Nanomedicine ; 11(7): 1797-807, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26093057

RESUMO

Nanoparticles (NPs) are cleared by monocytes and macrophages. Chemokines CCL2 and CCL5 are key mediators for recruitment of these immune cells into tumors and tissues. The purpose of this study was to investigate effects of CCL2 and CCL5 on the pharmacokinetics (PKs) of NPs. Mice deficient in CCL2 or CCL5 demonstrated altered clearance and tissue distribution of polyethylene glycol tagged liposomal doxorubicin (PLD) compared to control mice. The PK studies using mice bearing SKOV3 ovarian cancer xenografts revealed that the presence of tumor cells and higher expression of chemokines were significantly associated with greater clearance of PLD compared to non-tumor bearing mice. Plasma exposure of encapsulated liposomal doxorubicin positively correlated with the total exposure of plasma CCL2 and CCL5 in patients with recurrent epithelial ovarian cancer treated with PLD. These data emphasize that the interplay between PLD and chemokines may have an important role in optimizing PLD therapy. FROM THE CLINICAL EDITOR: The use of nanoparticles as drug delivery carriers is gaining widespread acceptance in the clinical setting. However, the underlying pharmacokinetics of these novel drugs has not really been elucidated. In this interesting article, the authors carried out experiments using mice deficient in CCL2 or CCL5 to study the clearance of liposomal system. They showed the important role the immune system played and would enable better designs of future drug delivery systems.


Assuntos
Quimiocina CCL2/sangue , Quimiocina CCL5/sangue , Doxorrubicina/análogos & derivados , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Carcinoma Epitelial do Ovário , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Epiteliais e Glandulares/sangue , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Ther Adv Med Oncol ; 13: 17588359211053700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733359

RESUMO

BACKGROUND: Minibeam radiation therapy is an experimental radiation therapy utilizing an array of parallel submillimeter planar X-ray beams. In preclinical studies, minibeam radiation therapy has been shown to eradicate tumors and cause significantly less damage to normal tissue compared to equivalent radiation doses delivered by conventional broadbeam radiation therapy, where radiation dose is uniformly distributed. METHODS: Expanding on prior studies that suggested minibeam radiation therapy increased perfusion in tumors, we compared a single fraction of minibeam radiation therapy (peak dose:valley dose of 28 Gy:2.1 Gy and 100 Gy:7.5 Gy) and broadbeam radiation therapy (7 Gy) in their ability to enhance tumor delivery of PEGylated liposomal doxorubicin and alter the tumor microenvironment in a murine tumor model. Plasma and tumor pharmacokinetic studies of PEGylated liposomal doxorubicin and tumor microenvironment profiling were performed in a genetically engineered mouse model of claudin-low triple-negative breast cancer (T11). RESULTS: Minibeam radiation therapy (28 Gy) and broadbeam radiation therapy (7 Gy) increased PEGylated liposomal doxorubicin tumor delivery by 7.1-fold and 2.7-fold, respectively, compared to PEGylated liposomal doxorubicin alone, without altering the plasma disposition. The enhanced tumor delivery of PEGylated liposomal doxorubicin by minibeam radiation therapy is consistent after repeated dosing, is associated with changes in tumor macrophages but not collagen or angiogenesis, and nontoxic to local tissues. Our study indicated that the minibeam radiation therapy's ability to enhance the drug delivery decreases from 28 to 100 Gy peak dose. DISCUSSION: Our studies suggest that low-dose minibeam radiation therapy is a safe and effective method to significantly enhance the tumor delivery of nanoparticle agents.

6.
Mol Cancer Res ; 17(7): 1503-1518, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000582

RESUMO

Screening of an inhibitor library targeting kinases and epigenetic regulators identified several molecules having antiproliferative synergy with extraterminal domain (BET) bromodomain (BD) inhibitors (JQ1, OTX015) in triple-negative breast cancer (TNBC). GSK2801, an inhibitor of BAZ2A/B BDs, of the imitation switch chromatin remodeling complexes, and BRD9, of the SWI/SNF complex, demonstrated synergy independent of BRD4 control of P-TEFb-mediated pause-release of RNA polymerase II. GSK2801 or RNAi knockdown of BAZ2A/B with JQ1 selectively displaced BRD2 at promoters/enhancers of ETS-regulated genes. Additional displacement of BRD2 from rDNA in the nucleolus coincided with decreased 45S rRNA, revealing a function of BRD2 in regulating RNA polymerase I transcription. In 2D cultures, enhanced displacement of BRD2 from chromatin by combination drug treatment induced senescence. In spheroid cultures, combination treatment induced cleaved caspase-3 and cleaved PARP characteristic of apoptosis in tumor cells. Thus, GSK2801 blocks BRD2-driven transcription in combination with BET inhibitor and induces apoptosis of TNBC. IMPLICATIONS: Synergistic inhibition of BDs encoded in BAZ2A/B, BRD9, and BET proteins induces apoptosis of TNBC by a combinatorial suppression of ribosomal DNA transcription and ETS-regulated genes.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Indolizinas/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Polimerase II/genética , RNA Ribossômico/genética , Receptores de Superfície Celular/antagonistas & inibidores , Sulfonas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
7.
J Pharm Biomed Anal ; 119: 122-9, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26678179

RESUMO

Doxorubicin, a widely used anticancer agent, exhibits antitumor activity against a wide variety of malignancies. The drug exerts its cytotoxic effects by binding to and intercalating within the DNA of tumor and tissue cells. However, current assays are unable to accurately determine the concentration of the intracellular active form of doxorubicin. Thus, the development of a sample processing method and a high-performance liquid chromatography (HPLC) methodology was performed in order to quantify doxorubicin that is associated with DNA in tumors and tissues, which provided an intracellular cytotoxic measure of doxorubicin exposure after administration of small molecule and nanoparticle formulations of doxorubicin. The assay uses daunorubicin as an internal standard; liquid-liquid phase extraction to isolate drug associated with DNA; a Shimadzu HPLC with fluorescence detection equipped with a Phenomenex Luna C18 (2µm, 2.0×100mm) analytical column and a gradient mobile phase of 0.1% formic acid in water or acetonitrile for separation and quantification. The assay has a lower limit of detection (LLOQ) of 10ng/mL and is shown to be linear up to 3000ng/mL. The intra- and inter-day precision of the assay expressed as a coefficient of variation (CV%) ranged from 4.01 to 8.81%. Furthermore, the suitability of this assay for measuring doxorubicin associated with DNA in vivo was demonstrated by using it to quantify the doxorubicin concentration within tumor samples from SKOV3 and HEC1A mice obtained 72h after administration of PEGylated liposomal doxorubicin (Doxil(®); PLD) at 6mg/kg IV x 1. This HPLC assay allows for sensitive intracellular quantification of doxorubicin and will be an important tool for future studies evaluating intracellular pharmacokinetics of doxorubicin and various nanoparticle formulations of doxorubicin.


Assuntos
Antibióticos Antineoplásicos/análise , Cromatografia Líquida de Alta Pressão/métodos , Adutos de DNA/análise , DNA/química , Doxorrubicina/análise , Fígado/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Adutos de DNA/farmacocinética , Doxorrubicina/farmacocinética , Estabilidade de Medicamentos , Feminino , Humanos , Limite de Detecção , Camundongos SCID , Reprodutibilidade dos Testes , Distribuição Tecidual
8.
Clin Cancer Res ; 20(23): 6083-95, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25231403

RESUMO

PURPOSE: Tumor cells are surrounded by a complex microenvironment. The purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in the variability of nanoparticle (NP) delivery and efficacy. EXPERIMENTAL DESIGNS: C3(1)-T-Antigen genetically engineered mouse model (C3-TAg) and T11/TP53(Null) orthotopic syngeneic murine transplant model (T11) representing human breast tumor subtypes basal-like and claudin-low, respectively, were evaluated. For the pharmacokinetic studies, non-liposomal doxorubicin (NL-doxo) or polyethylene glycol tagged (PEGylated) liposomal doxorubicin (PLD) was administered at 6 mg/kg i.v. x1. Area under the concentration versus time curve (AUC) of doxorubicin was calculated. Macrophages, collagen, and the amount of vasculature were assessed by IHC. Chemokines and cytokines were measured by multiplex immunochemistry. NL-doxo or PLD was administered at 6 mg/kg i.v. weekly x6 in efficacy studies. Analyses of intermediary tumor response and overall survival were performed. RESULTS: Plasma AUC of NL-doxo and PLD encapsulated and released doxorubicin was similar between two models. However, tumor sum total AUC of PLD was 2-fold greater in C3-TAg compared with T11 (P < 0.05). T11 tumors showed significantly higher expression of CC chemokine ligand (CCL) 2 and VEGF-a, greater vascular quantity, and decreased expression of VEGF-c compared with C3-TAg (P < 0.05). PLD was more efficacious compared with NL-doxo in both models. CONCLUSION: The tumor microenvironment and/or tumor cell features of breast cancer affected NP tumor delivery and efficacy, but not the small-molecule drug. Our findings reveal the role of the tumor microenvironment in variability of NP delivery and therapeutic outcomes.


Assuntos
Neoplasias da Mama/patologia , Nanopartículas/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Quimiocina CCL2/sangue , Quimiocina CCL2/metabolismo , Quimiocina CCL5/sangue , Quimiocina CCL5/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Nanopartículas/administração & dosagem , Neovascularização Patológica , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA