RESUMO
Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.
Assuntos
Neoplasias Colorretais , Lesões Pré-Cancerosas , Humanos , Neoplasias Colorretais/diagnóstico , Hiperplasia , Carcinogênese , Antígenos Virais de TumoresRESUMO
Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide. Early detection of this neoplasia has proven to improve prognosis, resulting in a 90% increase in survival. However, available CRC screening methods have limitations, requiring the development of new tools. MicroRNA biomarkers have emerged as a powerful screening tool, as they are highly expressed in CRC patients and easily detectable in several biological samples. While microRNAs are extensively studied in blood samples, recent interest has now arisen in other samples, such as stool samples, where they can be combined with existing screening methods. Among the microRNAs described in the literature, microRNA-21-5p and microRNA-92a-3p and their cluster have demonstrated high potential for early CRC screening. Furthermore, the combination of multiple microRNAs has shown improved performance in CRC detection compared to individual microRNAs. This review aims to assess the available data in the literature on microRNAs as promising biomarkers for early CRC screening, explore their advantages and disadvantages, and discuss the optimal study characteristics for analyzing these biomarkers.
Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genéticaRESUMO
BACKGROUND: Cancer is a leading cause of death worldwide, with metastasis playing a significant role. Circulating Tumour Cells (CTCs) can provide important real-time insights into tumour heterogeneity and clonal evolution, making them an important tool for early diagnosis and patient monitoring. Isolated CTCs are typically identified by immunocytochemistry using positive biomarkers (cytokeratin) and exclusion biomarkers (CD45). However, some white blood cell (WBC) populations can express low levels of CD45 and stain non-specifically for cytokeratin, increasing their risk of misclassification as CTCs. There is a clear need to improve CTC detection and enumeration criteria to unequivocally eliminate interfering WBC populations. RESULTS: This study showed that, indeed, some granulocyte subpopulations expressed low levels of CD45 and stained non-specifically for cytokeratin, misidentifying them as CTCs. These same cells, however, strongly expressed CD15, allowing them to be identified as WBCs and excluded from CTC classification. Flow cytometry confirmed the specificity of the CD15 antibody for the granulocyte subpopulation. False positives were considerably reduced from 25 % to 0.2 % by double exclusion, combining a CD15 antibody with a highly specific CD45 antibody. Furthermore, complete elimination of potential false positives was achieved using double exclusion in combination with improved selection of cytokeratin antibody. The study emphasises the importance of a robust exclusion criteria and high antibody specificity in CTC immuno-assays for accurate identification of CTC candidates and thorough exclusion of interfering WBC subpopulations. SIGNIFICANCE: This study demonstrated how misidentifying a granulocyte subpopulation can lead to inaccurate CTC evaluation. However, sensitivity and specificity of CTC identification may be improved by using high-performing antibodies and by including a second exclusion biomarker, in turn, allowing for a more comprehensive clinical application of CTCs.