Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Hum Genomics ; 17(1): 80, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37641126

RESUMO

Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Triagem , Alantoína , Surtos de Doenças , Aprendizado de Máquina
2.
Anal Bioanal Chem ; 416(26): 5701-5710, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39190144

RESUMO

The use of pesticides is often regarded as a fundamental aspect of conventional agriculture. However, these compounds have gained recognition as some of the oldest and most widely employed xenobiotic contaminants, necessitating effective strategies for human biomonitoring. In this context, a method was developed for the determination of 16 legacy organochlorine pesticides, 6 metabolites of current pesticides (2,4-D, malathion, parathion, fipronil, pyraclostrobin, cypermethrin, permethrin, cyfluthrin), and 1 triazine herbicide (atrazine) in serum. Samples were prepared with water, formic acid, acetonitrile, and ultrasound irradiation, followed by solid-phase extraction with Oasis Prime HLB. Subsequently, metabolites from current pesticides underwent derivatization using MTBSTFA with 1% TBDMSCl for analysis via gas chromatography-tandem mass spectrometry (GC-MS/MS), employing an SLB-5MS fused silica capillary column. Analytical curves were generated with limits of quantification from 0.3 to 4.0 ng.mL-1. Accuracy ranged from 69 to 124%, and the coefficient of variation from 2 to 28%. Moreover, determining 1-(4-chlorophenyl)-1H-pyrazol-3-ol was suggested as a biomarker for pyraclostrobin biomonitoring. This analytical approach facilitated the determination of both legacy and metabolites of current pesticides in the same serum sample, presenting an interesting and cost-effective option for large cohorts, and multi-omics studies that evaluate time-dependent biomarkers in blood samples, thereby enabling biomonitoring within the same matrix. Furthermore, a proof-of-concept involving 10 volunteers demonstrated exposure to 9 pesticides at mean concentrations measured in ng mL-1, consistent with findings from various biomonitoring initiatives.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Praguicidas , Espectrometria de Massas em Tandem , Humanos , Praguicidas/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Monitoramento Biológico/métodos , Adulto
3.
Anal Bioanal Chem ; 416(24): 5233-5253, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39158631

RESUMO

Liquid chromatography-mass spectrometry (LC-MS) has emerged as a powerful analytical technique for analyzing complex biological samples. Among various chromatographic stationary phases, porous graphitic carbon (PGC) columns have attracted significant attention due to their unique properties-such as the ability to separate both polar and non-polar compounds and their stability through all pH ranges and to high temperatures-besides the compatibility with LC-MS. This review discusses the applicability of PGC for SPE and separation in LC-MS-based analyses of human biological samples, highlighting the diverse applications of PGC-LC-MS in analyzing endogenous metabolites, pharmaceuticals, and biomarkers, such as glycans, proteins, oligosaccharides, sugar phosphates, and nucleotides. Additionally, the fundamental principles underlying PGC column chemistry and its advantages, challenges, and advances in method development are explored. This comprehensive review aims to provide researchers and practitioners with a valuable resource for understanding the capabilities and limitations of PGC columns in LC-MS-based analysis of human biological samples, thereby facilitating advancements in analytical methodologies and biomedical research.


Assuntos
Grafite , Espectrometria de Massas , Humanos , Grafite/química , Cromatografia Líquida/métodos , Porosidade , Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Biomarcadores/análise , Proteínas/análise , Polissacarídeos/análise , Espectrometria de Massa com Cromatografia Líquida
4.
Anal Bioanal Chem ; 415(25): 6165-6176, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532864

RESUMO

An automated microextraction by packed sorbent followed by liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS) method was developed for the determination of four endocrine disruptors-parabens, benzophenones, and synthetic phenolic antioxidants-in wastewater samples. The method utilizes a lab-made repackable MEPS device and a multi-syringe robotic platform that provides flexibility to test small quantities (2 mg) of multiple extraction phases and enables high-throughput capabilities for efficient method development. The overall performance of the MEPS procedure, including the investigation of influencing variables and the optimization of operational parameters for the robotic platform, was comprehensively studied through univariate and multivariate experiments. Under optimized conditions, the target analytes were effectively extracted from a small sample volume of 1.5 mL, with competitive detectability and analytical confidence. The limits of detection ranged from 0.15 to 0.30 ng L-1, and the intra-day and inter-day relative standard deviations were between 3 and 21%. The method's applicability was successfully demonstrated by determining methylparaben, propylparaben, butylated hydroxyanisole, and oxybenzone in wastewater samples collected from the São Carlos (SP, Brazil) river. Overall, the developed method proved to be a fast, sensitive, reliable, and environmentally friendly analytical tool for water quality monitoring.

5.
J Sep Sci ; 46(15): e2300215, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37232209

RESUMO

Sample preparation frequently is considered the most critical stage of the analytical workflow. It affects the analytical throughput and costs; moreover, it is the primary source of error and possible sample contamination. To increase efficiency, productivity, and reliability, while minimizing costs and environmental impacts, miniaturization and automation of sample preparation are necessary. Nowadays, several types of liquid-phase and solid-phase microextractions are available, as well as different automatization strategies. Thus, this review summarizes recent developments in automated microextractions coupled with liquid chromatography, from 2016 to 2022. Therefore, outstanding technologies and their main outcomes, as well as miniaturization and automation of sample preparation, are critically analyzed. Focus is given to main microextraction automation strategies, such as flow techniques, robotic systems, and column-switching approaches, reviewing their applications to the determination of small organic molecules in biological, environmental, and food/beverage samples.


Assuntos
Microextração em Fase Líquida , Microextração em Fase Sólida , Automação de Bibliotecas , Análise de Alimentos/métodos , Meio Ambiente , Microextração em Fase Sólida/instrumentação , Microextração em Fase Sólida/métodos , Microextração em Fase Líquida/instrumentação , Microextração em Fase Líquida/métodos , Humanos , Animais
6.
Electrophoresis ; 43(15): 1555-1566, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35430741

RESUMO

Cannabinoids are pharmacologically active compounds present in cannabis plants, which have become important research topics in the modern toxicological and medical research fields. Not only is cannabis the most used drug globally, but also cannabinoids have a growing use to treat a series of diseases. Therefore, new, fast, and efficient analytical methods for analyzing these substances in different matrices are demanded. This study developed a new packed-in-tube solid-phase microextraction (IT-SPME) method coupled to liquid chromatography with tandem mass spectrometry (LC-MS/MS), for the automated microextraction of seven cannabinoids from human urine. Packed IT-SPME microcolumns were prepared in (508 µm i.d. × 50 mm) stainless-steel hardware; each one required only 12 mg of sorbent phase. Different sorbents were evaluated; fractional factorial design 24-1 and a central composite design were employed for microextraction optimization. Under optimized conditions, the developed method was a fast and straightforward approach. Only 250 µl of urine sample was needed, and no hydrolysis was required. The sample pretreatment included only dilution and centrifugation steps (8 min), whereas the complete IT-SPME-LC-MS/MS method took another 12 min, with a sample throughput of 3 samples h-1 . The developed method presented adequate precision, accuracy and linearity; R2 values ranged from 0.990 to 0.997, in the range of 10-1000 ng ml-1 . The lower limits of quantification varied from 10 to 25 ng ml-1 . Finally, the method was successfully applied to analyze 20 actual urine samples, and the IT-SPME microcolumn was reused over 150 times.


Assuntos
Canabinoides , Microextração em Fase Sólida , Cromatografia Líquida/métodos , Humanos , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos
7.
Electrophoresis ; 43(15): 1567-1576, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567359

RESUMO

Dynamic single-drop microextraction (SDME) was automatized employing an Arduino-based lab-made Cartesian robot and implemented to determine parabens in wastewater samples in combination with liquid chromatography-tandem mass spectrometry. A dedicated Arduino sketch controls the auto-performance of all the stages of the SDME process, including syringe filling, drop exposition, solvent recycling, and extract collection. Univariate and multivariate experiments investigated the main variables affecting the SDME performance, including robot-dependent and additional operational parameters. Under selected conditions, limit of detections were established at 0.3 µg/L for all the analytes, and the method provided linear responses in the range between 0.6 and 10 µg/L, with adequate reproducibility, measured as intraday relative standard deviations (RSDs) between 5.54% and 17.94%, (n = 6), and inter-days RSDs between 8.97% and 16.49% (n = 9). The robot-assisted technique eased the control of dynamic SDME, making the process more feasible, robust, and reliable so that the developed setup demonstrated to be a competitive strategy for the automated extraction of organic pollutants from water samples.


Assuntos
Microextração em Fase Líquida , Robótica , Poluentes Químicos da Água , Cromatografia Líquida , Microextração em Fase Líquida/métodos , Parabenos/análise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Águas Residuárias/análise , Poluentes Químicos da Água/análise
8.
J Environ Manage ; 317: 115388, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653845

RESUMO

The organic matter bioconversion into methane during anaerobic digestion (AD) comprises different steps, the acidogenic and methanogenic phases being clearly distinct in terms of metabolic activities. In this work, new configurations of anaerobic fixed bed biofilm reactors (AFBBR) were operated under conventional methanogenic conditions (single phase - SP-AFBBR, M1R), and in a sequential two-phase system, acidogenic reactor followed by methanogenic reactor (TP-AFBBR, AcR + M2R), in order to verify the impact of the AD phase separation on the overall system performance in operational, kinetics and microbiological aspects. The results indicated that feeding the methanogenic reactor with the acidogenic effluent stream provided a shorter operating start-up period (11 and 32 days for SP and TP-AFBBR, respectively), a greater alkalinity generation (0.14 and 0.41 g-CaCO3·g-CODremoved-1 for M1R and M2R, respectively), and the optimization of biomethane production (methane yield of 95 and 154 N-mLCH4·g-CODremoved-1 for M1R and M2R, respectively). The COD removal kinetics was also favored in the TP-AFBBR (k1-COD = 1.4 and 2.9 h-1 for M1R and M2R, respectively), since the soluble fermentation products were readily bioavailable to the biomass in the reactor. Hydrogenotrophic methanogenesis was the predominant pathway in the M2R, while the Methanosaeta-driven acetoclastic pathway predominated in the M1R. The greater diversity of Bacteria and Archaea in M2R denotes a better balance between the species that degrade volatile organic acids from AcR (i.e. Syntrophorhabdus, Syntrophus and Syntrophobacter) and the hydrogenotrophic methanogens (Methanoregula, Methanolinea and Methanospirillum) that consume the biodegradation products. The estimated bioenergy generation potential (range of 0.39-0.64 kWh·m-3-sewage considering the COD removed) for full-scale TP-sewage treatment plants evidences the feasibility of energetic recovery in the domestic sewage anaerobic treatment.


Assuntos
Euryarchaeota , Esgotos , Anaerobiose , Biofilmes , Reatores Biológicos/microbiologia , Metano , Esgotos/microbiologia
9.
J Environ Manage ; 278(Pt 2): 111552, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129024

RESUMO

New sanitation systems have been developed to treat, recover energy and nutrients, and permit reuse processes at the source of generation, minimizing water use and flow segregation. Thus, this study was carried out with the objective of evaluating the potential of hybrid constructed wetlands in the removal of organic matter, nutrients, pathogenic microorganisms, and 12 antibiotics from blackwater previously treated by an upflow anaerobic sludge blanket reactor. A hybrid system of constructed wetlands was used, comprised of a horizontal subsurface flow constructed wetland with a total volume of 0.60 m3 followed by a vertical subsurface flow constructed wetland with a total volume of 0.20 m3. Three different hydraulic retention times were comparatively tested (1.0, 2.0, and 3.0 days for the horizontal subsurface flow constructed wetland, and 1.1, 0.9, and 0.4 days for the vertical subsurface flow constructed wetland) in four distinct stages. The plant species used was Canna x generalis. The results from this study demonstrate the potential of constructed wetlands as a suitable technology for post-treatment of segregated domestic wastewater (anaerobically-digested blackwater). Efficient reduction of COD, BOD5, total nitrogen, and total phosphorus (74, 93, 50, and 61%, respectively) was achieved, with a hydraulic retention time of 3.0 and 1.1 days for horizontal and vertical subsurface flow constructed wetland, respectively (stage IV). The presence of ciprofloxacin was confirmed by chromatographic and mass spectrometric analysis in an average concentration of 442.6 ng.L-1 at the inflow of the horizontal subsurface flow constructed wetland, but was not observed at the outflow.


Assuntos
Antibacterianos , Áreas Alagadas , Nitrogênio/análise , Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
10.
J Environ Manage ; 273: 111170, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763746

RESUMO

Antibiotic compounds, notably sulfamethoxazole (SMX) and ciprofloxacin (CIP), are ubiquitous emerging contaminants (ECs), which are often found in domestic sewage. They are associated with the development of antimicrobial resistance. Operational parameters, e.g. organic loading rate (OLR), hydraulic retention time (HRT) and sludge retention time, may influence EC biodegradation in wastewater treatment plants. This study assessed the impact of the OLR variation on the biodegradation of CIP and SMX, applying two configurations of anaerobic fixed bed reactors: anaerobic packed bed biofilm reactor (APBBR) and anaerobic structured bed biofilm reactor (ASBBR). A significant reduction in the biodegradation of SMX (APBBR: 93-69%; ASBBR: 94-81%) and CIP (APBBR: 85-66%; ASBBR: 85-64%) was observed increasing OLR from 0.6 to 2.0 kgCOD m-3 d-1. The decrease in the HRT from 12 to 4 h resulted in higher liquid-phase mass transfer coefficient (APBBR: ks from 0.01 to 0.05 cm h-1; ASBBR: ks from 0.07 to 0.24 cm h-1), but this was not enough to overcome the decrease in the antibiotic-biomass contact time on biofilm, thus reducing the bioreactors' performance. The ASBBR favored biomethane production (from 7 to 17 mLCH4 g-1VSS L-1 d-1) and biodegradation kinetics (kbio from 1.7 to 4.2 and for SMX and from 2.1 to 4.8 L g-1VSS d-1 for CIP) due to the higher relative abundance of the archaea community in the biofilm and the lower liquid-phase mass transfer resistance in the structured bed. CIP and SMX cometabolic biodegradation was associated to the hydrogenotrophic methanogenesis (mainly Methanobacterium genus) in co-culture with fermentative bacteria (notably the genera Clostridium, Bacillus, Lactivibrio, Syntrophobacter and Syntrophorhabdus). The anaerobic fixed bed biofilm reactors proved to be highly efficient in biodegrading the antibiotics, preventing them from spreading to the environment.


Assuntos
Ciprofloxacina , Sulfametoxazol , Anaerobiose , Bactérias Anaeróbias , Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos
11.
Anal Bioanal Chem ; 411(29): 7889-7897, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31732788

RESUMO

The present paper describes an original method for the online preconcentration and analysis of ring-substituted amphetamines in urine samples, used on the integration of robot-assisted hollow fiber liquid-phase microextraction (HF-LPME), high-performance liquid chromatography (HPLC), and fluorescence detection (FLD). A lab-made autosampler, actuating a 100-µL syringe and equipped with a three-way solenoid microvalve, allowed the acceptor phase to flow through and be withdrawn from the lumen fiber, enabling the automated online transference of the enriched acceptor phase for chromatographic analysis, through a six-port switching valve. The developed online HF-LPME-LC/FLD method demonstrated high analytical throughput and confidence, facilitating the efficient extraction and determination of the target analytes, with minimal solvent consumption and sample manipulation, in a straightforward way. Sample cleanup, analyte uptake, and analysis were carried out in 14.5 min. Under optimal conditions, automated online HF-LPME showed excellent linearity, precision, and trueness, obtaining intraday RSDs between 2.9 and 9.2% (n = 6) and interday RSDs between 5.3 and 9.3% (n = 6). Enrichment factors (EFs) ranged between 14.2 and 15.7, extraction recoveries (ERs) ranged between 17.7 and 19.5%, and the limits of detection (S/N = 3) were 2.0, 3.0, and 3.0 µg L-1 for MDA, MDMA, and MDEA, respectively. The method proved to be an effortless, rapid, reliable, and environment-friendly approach for the determination of drug abuse in urine samples. Graphical abstract.


Assuntos
Anfetaminas/urina , Cromatografia Líquida de Alta Pressão/métodos , Microextração em Fase Líquida/métodos , Anfetaminas/química , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
13.
Artif Organs ; 40(5): 480-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26496142

RESUMO

To achieve a clearer understanding of the mechanisms responsible for neutrophil dysfunction recently described in dogs with chronic renal failure (CRF), the plasma concentrations of free p-cresol in healthy dogs (n = 20) and those with CRF (n = 20) were compared. The degree of correlation was determined between plasma levels of p-cresol and markers of oxidative stress and function of neutrophils in these dogs. The effect of this compound on oxidative metabolism and apoptosis was assessed in neutrophils isolated from 16 healthy dogs incubated in RPMI 1640 supplemented with p-cresol (0.405 mg/L) and compared with medium supplemented with uremic plasma (50%). To achieve this, the plasma concentration of p-cresol was quantified by liquid phase high-performance liquid chromatography. The neutrophil oxidative metabolism was determined using the probes hydroethidine and 2',7'-dichlorofluorescein diacetate and apoptosis was measured using Annexin V-PE by capillary flow cytometry. Compared with the healthy dogs, uremic dogs presented higher concentrations of free p-cresol, greater oxidative stress, and neutrophils primed for accelerated apoptosis. The free p-cresol induced in neutrophils from healthy dogs increased apoptosis and decreased reactive oxygen species production. We conclude that the health status presented during uremia concomitant with the increase in plasma free p-cresol can contribute to the presence of immunosuppression in dogs with CRF.


Assuntos
Cresóis/sangue , Falência Renal Crônica/sangue , Falência Renal Crônica/patologia , Neutrófilos/patologia , Animais , Apoptose , Cresóis/metabolismo , Cães , Feminino , Rim/metabolismo , Rim/patologia , Falência Renal Crônica/metabolismo , Masculino , Neutrófilos/metabolismo , Estresse Oxidativo , Uremia/sangue , Uremia/metabolismo , Uremia/patologia
14.
Appl Environ Microbiol ; 81(13): 4525-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911490

RESUMO

Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology.


Assuntos
Formigas/microbiologia , Biomassa , Metabolismo dos Carboidratos , Fungos/fisiologia , Polímeros/metabolismo , Simbiose , Animais , Reatores Biológicos/microbiologia , Fermentação , Fungos/crescimento & desenvolvimento , Fungos/metabolismo
15.
Analyst ; 140(22): 7768-75, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26460233

RESUMO

Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.


Assuntos
Antagonistas Adrenérgicos beta/isolamento & purificação , Impressão Molecular/métodos , Oxprenolol/isolamento & purificação , Polímeros/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Humanos , Interações Hidrofóbicas e Hidrofílicas
16.
Anal Bioanal Chem ; 407(29): 8787-801, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26446896

RESUMO

This study presents a column-switching solid-phase extraction online-coupled to a liquid chromatography/tandem mass spectrometry (SPE-LC-MS/MS) method for simultaneous analysis of 12 antibiotics (7 sulfonamides and 5 fluoroquinolones) and caffeine detected in the sewage and effluent of a pilot anaerobic reactor used in sewage treatment. After acidification and filtration, the samples were directly injected into a simple and conventional LC system. Backflush and foreflush modes were compared based on the theoretical plates and peak asymmetry observed. The method was tested in terms of detection (MDL) and quantification limit (MQL), linearity, relative recovery, and precision intra- and inter-day in lab-made sewage samples. The method presented suitable figures of merit in terms of detection, varying from 8.00 × 10(-5) to 6.00 × 10(-2) ng (0.800 up to 600 ng L(-1); caffeine) with direct injection volume of only 100 µL and 13 min of total analysis time (sample preparation and chromatographic run). When the method was applied in the analysis of sewage and effluent of the anaerobic reactor (n = 15), six antibiotics and caffeine were detected in concentrations ranging from 0.018 to 1097 µg L(-1). To guarantee a reliable quantification, standard addition was used to overcome the matrix effect.


Assuntos
Antibacterianos/análise , Reatores Biológicos , Cromatografia Líquida/instrumentação , Esgotos/análise , Extração em Fase Sólida/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Poluentes Químicos da Água/análise , Cafeína/análise , Cromatografia Líquida/economia , Cromatografia Líquida/métodos , Desenho de Equipamento , Fluoroquinolonas/análise , Reprodutibilidade dos Testes , Extração em Fase Sólida/economia , Extração em Fase Sólida/métodos , Sulfonamidas/análise , Espectrometria de Massas em Tandem/economia , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
17.
J Sep Sci ; 37(21): 3150-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25137313

RESUMO

Molecularly imprinted polymers for the determination of triazines were synthesized by precipitation using atrazine as template, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, and 2,2'-azobisisobutrynitrile as initiator. The polymers were characterized by infrared spectroscopy and scanning electron microscopy and packed in a device for microextraction by packed sorbent aiming for the preconcentration/cleanup of herbicides, such as atrazine, simazine, simetryn, ametryn, and terbutryn in corn samples. Liquid chromatography coupled with time-of-flight mass spectrometry was used for the separation and determination of the herbicides. The selectivity coefficient of molecularly imprinted polymers was compared with that of nonimprinted polymer for the binary mixtures of atrazine/propanil and atrazine/picloram, and the values obtained were 15.6 and 2.96, respectively. The analytical curve ranged from 10 to 80 µg/kg (r = 0.989) and the limits of detection and quantification in the corn matrices were 3.3 and 10 µg/kg, respectively. Intra- and interday precisions were < 14.8% and accuracy was better than 90.9% for all herbicides. Polymer synthesis was successfully applied to the cleanup and preconcentration of triazines from fortified corn samples with 91.1-109.1% of recovery.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Herbicidas/isolamento & purificação , Espectrometria de Massas/métodos , Polímeros/química , Microextração em Fase Sólida/métodos , Triazinas/isolamento & purificação , Adsorção , Herbicidas/química , Impressão Molecular , Polímeros/síntese química , Microextração em Fase Sólida/instrumentação , Triazinas/química
18.
Chemosphere ; 357: 142006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621493

RESUMO

Anaerobic digestion in two sequential phases, acidogenesis and methanogenesis, has been shown to be beneficial for enhancing the biomethane generation from wastewater. In this work, the application of glycerol (GOH) as a fermentation co-substrate during the wastewater treatment was evaluated on the biodegradation of different pharmaceuticals and personal care products (PPCPs). GOH co-digestion during acidogenesis led to a significant increase in the biodegradation of acetaminophen (from 78 to 89%), ciprofloxacin (from 25 to 46%), naproxen (from 73 to 86%), diclofenac (from 36 to 48%), ibuprofen (from 65 to 88%), metoprolol (from 45 to 59%), methylparaben (from 64 to 78%) and propylparaben (from 68 to 74%). The heterotrophic co-metabolism of PPCPs driven by glycerol was confirmed by the biodegradation kinetics, in which kbio (biodegradation kinetics constant) values increased from 0.18 to 2.11 to 0.27-3.60 L g-1-VSS d-1, for the operational phases without and with GOH, respectively. The assessment of metabolic pathways in each phase revealed that the prevalence of aromatic compounds degradation, metabolism of xenobiotics by cytochrome P450, and benzoate degradation routes during acidogenesis are key factors for the enzymatic mechanisms linked to the PPCPs co-metabolism. The phase separation of anaerobic digestion was effective in the PPCPs biodegradation, and the co-fermentation of glycerol provided an increase in the generation potential of biomethane in the system (energetic potential of 5.0 and 6.3 kJ g-1-CODremoved, without and with GOH, respectively). This study showed evidence that glycerol co-fermentation can exert a synergistic effect on the PPCPs removal during anaerobic digestion mediated by heterotrophic co-metabolism.


Assuntos
Biodegradação Ambiental , Fermentação , Glicerol , Águas Residuárias , Poluentes Químicos da Água , Glicerol/metabolismo , Anaerobiose , Preparações Farmacêuticas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Cosméticos/metabolismo , Cinética
19.
J Hazard Mater ; 478: 135444, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39153297

RESUMO

Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.


Assuntos
Reatores Biológicos , Biotransformação , Cosméticos , Metano , Anaerobiose , Preparações Farmacêuticas/metabolismo , Cosméticos/metabolismo , Metano/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental
20.
Front Public Health ; 12: 1336014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38932775

RESUMO

Introduction: Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives: This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method: The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis: Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions: Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.


Assuntos
Monitoramento Biológico , Resíduos de Praguicidas , Humanos , Resíduos de Praguicidas/urina , Resíduos de Praguicidas/análise , Monitoramento Biológico/métodos , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas/métodos , Exposição Ambiental/análise , Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA