Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 293(6): 1957-1975, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284679

RESUMO

Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-ß peptide (AßOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AßOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AßO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AßOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Células-Tronco Mesenquimais/citologia , Neurônios/metabolismo , Estresse Oxidativo , Sinapses/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Técnicas de Cocultura , Vesículas Extracelulares/genética , Hipocampo/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
J Neurosci ; 33(23): 9626-34, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739959

RESUMO

Brain accumulation of soluble amyloid-ß oligomers (AßOs) has been implicated in synapse failure and cognitive impairment in Alzheimer's disease (AD). However, whether and how oligomers of different sizes induce synapse dysfunction is a matter of controversy. Here, we report that low-molecular-weight (LMW) and high-molecular-weight (HMW) Aß oligomers differentially impact synapses and memory. A single intracerebroventricular injection of LMW AßOs (10 pmol) induced rapid and persistent cognitive impairment in mice. On the other hand, memory deficit induced by HMW AßOs (10 pmol) was found to be reversible. While memory impairment in LMW oligomer-injected mice was associated with decreased hippocampal synaptophysin and GluN2B immunoreactivities, synaptic pathology was not detected in the hippocampi of HMW oligomer-injected mice. On the other hand, HMW oligomers, but not LMW oligomers, induced oxidative stress in hippocampal neurons. Memantine rescued both neuronal oxidative stress and the transient memory impairment caused by HMW oligomers, but did not prevent the persistent cognitive deficit induced by LMW oligomers. Results establish that different Aß oligomer assemblies act in an orchestrated manner, inducing different pathologies and leading to synapse dysfunction. Furthermore, results suggest a mechanistic explanation for the limited efficacy of memantine in preventing memory loss in AD.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/tratamento farmacológico , Memantina/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Células Cultivadas , Transtornos Cognitivos/metabolismo , Masculino , Camundongos , Peso Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Ratos
3.
J Biol Chem ; 287(10): 7436-45, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22235132

RESUMO

Cognitive decline in Alzheimer disease (AD) is increasingly attributed to the neuronal impact of soluble oligomers of the amyloid-ß peptide (AßOs). Current knowledge on the molecular and cellular mechanisms underlying the toxicity of AßOs stems largely from rodent-derived cell/tissue culture experiments or from transgenic models of AD, which do not necessarily recapitulate the complexity of the human disease. Here, we used DNA microarray and RT-PCR to investigate changes in transcription in adult human cortical slices exposed to sublethal doses of AßOs. The results revealed a set of 27 genes that showed consistent differential expression upon exposure of slices from three different donors to AßOs. Functional classification of differentially expressed genes revealed that AßOs impact pathways important for neuronal physiology and known to be dysregulated in AD, including vesicle trafficking, cell adhesion, actin cytoskeleton dynamics, and insulin signaling. Most genes (70%) were down-regulated by AßO treatment, suggesting a predominantly inhibitory effect on the corresponding pathways. Significantly, AßOs induced down-regulation of synaptophysin, a presynaptic vesicle membrane protein, suggesting a mechanism by which oligomers cause synapse failure. The results provide insight into early mechanisms of pathogenesis of AD and suggest that the neuronal pathways affected by AßOs may be targets for the development of novel diagnostic or therapeutic approaches.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Adulto , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Encéfalo/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos
4.
Stem Cell Res Ther ; 10(1): 332, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747944

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton's jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer's disease-linked amyloid beta oligomers (AßOs). METHODS: We isolated and characterized EVs released by human Wharton's jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AßOs. RESULTS: hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AßOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AßOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. CONCLUSIONS: hMSC-EVs protected hippocampal neurons from damage induced by AßOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Neurônios/patologia , Neuroproteção , Estresse Oxidativo , Sinapses/patologia , Geleia de Wharton/citologia , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Hipocampo/patologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Multimerização Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sinapses/efeitos dos fármacos
5.
FASEB J ; 18(12): 1366-72, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15333579

RESUMO

In the past two decades, a large body of evidence has established a causative role for the beta-amyloid peptide (Abeta) in Alzheimer's disease (AD). However, recent debate has focused on whether amyloid fibrils or soluble oligomers of Abeta are the main neurotoxic species that contribute to neurodegeneration and dementia. Considerable early evidence has indicated that amyloid fibrils are toxic, but some recent studies support the notion that Abeta oligomers are the primary neurotoxins. While this crucial aspect of AD pathogenesis remains controversial, effective therapeutic strategies should ideally target both oligomeric and fibrillar species of Abeta. Here, we describe the anti-amyloidogenic and neuroprotective actions of some di- and tri-substituted aromatic compounds. Inhibition of the formation of soluble Abeta oligomers was monitored using a specific antibody-based assay that discriminates between Abeta oligomers and monomers. Thioflavin T and electron microscopy were used to screen for inhibitors of fibril formation. Taken together, these results led to the identification of compounds that more effectively block Abeta oligomerization than fibrillization. It is significant that such compounds completely blocked the neurotoxicity of Abeta to rat hippocampal neurons in culture. These findings provide a basis for the development of novel small molecule Abeta inhibitors with potential applications in AD.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Fármacos Neuroprotetores/farmacologia , Placa Amiloide/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Benzotiazóis , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hipocampo/citologia , Concentração Inibidora 50 , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Placa Amiloide/metabolismo , Estrutura Quaternária de Proteína/efeitos dos fármacos , Ratos , Solubilidade , Tiazóis
6.
PLoS One ; 5(12): e15230, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21179577

RESUMO

Brain accumulation of the amyloid-ß peptide (Aß) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between Aß-induced oxidative stress and HK activity. We found that Aß triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. Aß oligomers further impair energy metabolism by decreasing neuronal ATP levels. Aß-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked Aß-induced oxidative stress and neuronal death. Results suggest that Aß-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Neurônios/enzimologia , Animais , Sobrevivência Celular , Citosol/metabolismo , Desoxiglucose/farmacologia , Humanos , Isoenzimas/química , Neurônios/citologia , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
7.
J Biol Chem ; 283(14): 9359-68, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18234671

RESUMO

The amyloid-beta peptide (Abeta) plays a major role in neuronal dysfunction and neurotoxicity in Alzheimer disease. However, the signal transduction mechanisms involved in Abeta-induced neuronal dysfunction remain to be fully elucidated. A major current unknown is the identity of the protein receptor(s) involved in neuronal Abeta binding. Using phage display of peptide libraries, we have identified a number of peptides that bind Abeta and are homologous to neuronal receptors putatively involved in Abeta interactions. We report here on a cysteine-linked cyclic heptapeptide (denominated cSP5) that binds Abeta with high affinity and is homologous to the extracellular cysteine-rich domain of several members of the Frizzled (Fz) family of Wnt receptors. Based on this homology, we investigated the interaction between Abeta and Fz. The results show that Abeta binds to the Fz cysteine-rich domain at or in close proximity to the Wnt-binding site and inhibits the canonical Wnt signaling pathway. Interestingly, the cSP5 peptide completely blocks Abeta binding to Fz and prevents inhibition of Wnt signaling. These results indicate that the Abeta-binding site in Fz is homologous to cSP5 and that this is a relevant target for Abeta-instigated neurotoxicity. Furthermore, they suggest that blocking the interaction of Abeta with Fz might lead to novel therapeutic approaches to prevent neuronal dysfunction in Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptores Frizzled/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Sítios de Ligação , Linhagem Celular , Humanos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos
8.
J Neurochem ; 103(2): 736-48, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17727639

RESUMO

Protein aggregation and amyloid accumulation in different tissues are associated with cellular dysfunction and toxicity in important human pathologies, including Alzheimer's disease and various forms of systemic amyloidosis. Soluble oligomers formed at the early stages of protein aggregation have been increasingly recognized as the main toxic species in amyloid diseases. To gain insight into the mechanisms of toxicity instigated by soluble protein oligomers, we have investigated the aggregation of hen egg white lysozyme (HEWL), a normally harmless protein. HEWL initially aggregates into beta-sheet rich, roughly spherical oligomers which appear to convert with time into protofibrils and mature amyloid fibrils. HEWL oligomers are potently neurotoxic to rat cortical neurons in culture, while mature amyloid fibrils are little or non-toxic. Interestingly, when added to cortical neuronal cultures HEWL oligomers induce tau hyperphosphorylation at epitopes that are characteristically phosphorylated in neurons exposed to soluble oligomers of the amyloid-beta peptide. Furthermore, injection of HEWL oligomers in the cerebral cortices of adult rats induces extensive neurodegeneration in different brain areas. These results show that soluble oligomers from a non-disease related protein can mimic specific neuronal pathologies thought to be induced by soluble amyloid-beta peptide oligomers in Alzheimer's disease and support the notion that amyloid oligomers from different proteins may share common structural determinants that would explain their generic cytotoxicities.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Muramidase/química , Muramidase/toxicidade , Degeneração Neural/induzido quimicamente , Proteínas tau/metabolismo , Animais , Benzotiazóis , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Cromatografia em Gel , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Epitopos , Feminino , Imunofluorescência , Corantes Fluorescentes , Microscopia Eletrônica , Nefelometria e Turbidimetria , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação , Gravidez , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA