Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 137(5): 355-366, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36852978

RESUMO

Hereditary amyloid transthyretin (ATTRv) amyloidosis is a fatal neurodegenerative disorder, first identified in Portugal. The most common transthyretin (TTR) mutation in ATTRv results from an exchange of a methionine for a valine at position 30 (V30M). ATTRv is characterized by the extracellular deposition of aggregates and fibrils of mutant forms of TTR, particularly in the nerves and ganglia of the peripheral nervous system (PNS). This phenotype is often accompanied by the lack of inflammatory infiltrates, despite the importance of macrophages in removal of TTR deposits in ATTRv patients. The mechanisms underlying this impairment of inflammatory responses in ATTRv patients are poorly understood. Here, we show a significant down-regulation in the expression of several chemokines by bone marrow-derived macrophages (BMDM) generated from V30M TTR mice upon stimulation with toll-like receptor 4 (TLR4) and TLR2 agonists. The phosphorylation of the MAP kinase p38, important for TLR4 and TLR2 signaling pathways, was also down-regulated in V30M macrophages, as compared with wild-type (WT) ones. The present study contributes with new insights to unravel the molecular mechanisms underlying the lack of inflammatory immune responses observed in ATTRv patients and may help in the development of new immune therapeutic strategies for the disease.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Camundongos , Animais , Pré-Albumina/genética , Pré-Albumina/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/metabolismo , Macrófagos/metabolismo
2.
J Neuroinflammation ; 19(1): 44, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135578

RESUMO

BACKGROUND: Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system (CNS) characterized by demyelination and concomitant axonal loss. The lack of a single specific test, and the similarity to other inflammatory diseases of the central nervous system, makes it difficult to have a clear diagnosis of multiple sclerosis. Therefore, laboratory tests that allows a clear and definite diagnosis, as well as to predict the different clinical courses of the disease are of utmost importance. Herein, we compared the cerebrospinal fluid (CSF) proteome of patients with multiple sclerosis (in the relapse-remitting phase of the disease) and other diseases of the CNS (inflammatory and non-inflammatory) aiming at identifying reliable biomarkers of multiple sclerosis. METHODS: CSF samples from the discovery group were resolved by 2D-gel electrophoresis followed by identification of the protein spots by mass spectrometry. The results were analyzed using univariate (Student's t test) and multivariate (Hierarchical Cluster Analysis, Principal Component Analysis, Linear Discriminant Analysis) statistical and numerical techniques, to identify a set of protein spots that were differentially expressed in CSF samples from patients with multiple sclerosis when compared with other two groups. Validation of the results was performed in samples from a different set of patients using quantitative (e.g., ELISA) and semi-quantitative (e.g., Western Blot) experimental approaches. RESULTS: Analysis of the 2D-gels showed 13 protein spots that were differentially expressed in the three groups of patients: Alpha-1-antichymotrypsin, Prostaglandin-H2-isomerase, Retinol binding protein 4, Transthyretin (TTR), Apolipoprotein E, Gelsolin, Angiotensinogen, Agrin, Serum albumin, Myosin-15, Apolipoprotein B-100 and EF-hand calcium-binding domain-containing protein. ELISA experiments allowed validating part of the results obtained in the proteomics analysis and showed that some of the alterations in the CSF proteome are also mirrored in serum samples from multiple sclerosis patients. CSF of multiple sclerosis patients was characterized by TTR oligomerization, thus highlighting the importance of analyzing posttranslational modifications of the proteome in the identification of novel biomarkers of the disease. CONCLUSIONS: The model built based on the results obtained upon analysis of the 2D-gels and in the validation phase attained an accuracy of about 80% in distinguishing multiple sclerosis patients and the other two groups.


Assuntos
Esclerose Múltipla , Biomarcadores/líquido cefalorraquidiano , Eletroforese em Gel Bidimensional , Humanos , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Processamento de Proteína Pós-Traducional , Proteoma/análise
3.
Exp Cell Res ; 395(2): 112217, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768500

RESUMO

Hereditary transthyretin amyloidosis (ATTR) is caused by amyloid deposition of misfolded transthyretin (TTR) in various tissues. Recently, reduction of circulating serum TTR, achieved via silencing oligonucleotides, was introduced as therapy of ATTR amyloidosis. We explored the impact of Serpin Family A Member 1 (SERPINA1) on TTR mRNA and protein expression. Oncostatin M (OSM) induced SERPINA1 in hepatoma cells and mice, while concomitantly TTR expression was significantly reduced. SERPINA1 knockdown resulted in specific elevated TTR expression in hepatoma cells; however other genes belonging to the group of acute phase proteins were unaffected. In mice, serum TTR was elevated after mSERPINA1 knockdown throughout antisense treatment. Following SERPINA1 knockdown, TTR deposition in several tissues, including dorsal root ganglia and intestine, was found to be increased, however numbers did not exceed significance levels. The data suggest that SERPINA1 is a co-factor of TTR expression. Our findings provide novel insight in the regulation of TTR and reveal a role of SERPINA1 in the pathogenesis of ATTR amyloidosis.


Assuntos
Neuropatias Amiloides Familiares/metabolismo , Pré-Albumina/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Humanos , Camundongos , RNA Mensageiro/genética , alfa 1-Antitripsina/genética
4.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502397

RESUMO

Transthyretin (TTR) proteolysis has been recognized as a complementary mechanism contributing to transthyretin-related amyloidosis (ATTR amyloidosis). Accordingly, amyloid deposits can be composed mainly of full-length TTR or contain a mixture of both cleaved and full-length TTR, particularly in the heart. The fragmentation pattern at Lys48 suggests the involvement of a serine protease, such as plasmin. The most common TTR variant, TTR V30M, is susceptible to plasmin-mediated proteolysis, and the presence of TTR fragments facilitates TTR amyloidogenesis. Recent studies revealed that the serine protease inhibitor, SerpinA1, was differentially expressed in hepatocyte-like cells (HLCs) from ATTR patients. In this work, we evaluated the effects of SerpinA1 on in vitro and in vivo modulation of TTR V30M proteolysis, aggregation, and deposition. We found that plasmin-mediated TTR proteolysis and aggregation are partially inhibited by SerpinA1. Furthermore, in vivo downregulation of SerpinA1 increased TTR levels in mice plasma and deposition in the cardiac tissue of older animals. The presence of TTR fragments was observed in the heart of young and old mice but not in other tissues following SerpinA1 knockdown. Increased proteolytic activity, particularly plasmin activity, was detected in mice plasmas. Overall, our results indicate that SerpinA1 modulates TTR proteolysis and aggregation in vitro and in vivo.


Assuntos
Pré-Albumina/metabolismo , alfa 1-Antitripsina/metabolismo , Fatores Etários , Amiloide/metabolismo , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/fisiopatologia , Amiloidose/genética , Amiloidose/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Fibrinolisina , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pré-Albumina/genética , Pré-Albumina/fisiologia , Proteólise , alfa 1-Antitripsina/fisiologia
5.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875761

RESUMO

Transthyretin (TTR) amyloidoses (ATTR amyloidosis) are diseases associated with transthyretin (TTR) misfolding, aggregation and extracellular deposition in tissues as amyloid. Clinical manifestations of the disease are variable and include mainly polyneuropathy and/or cardiomyopathy. The reasons why TTR forms aggregates and amyloid are related with amino acid substitutions in the protein due to mutations, or with environmental alterations associated with aging, that make the protein more unstable and prone to aggregation. According to this model, several therapeutic approaches have been proposed for the diseases that range from stabilization of TTR, using chemical chaperones, to clearance of the aggregated protein deposited in tissues in the form of oligomers or small aggregates, by the action of disruptors or by activation of the immune system. Interestingly, different studies revealed that curcumin presents anti-amyloid properties, targeting multiple steps in the ATTR amyloidogenic cascade. The effects of curcumin on ATTR amyloidosis will be reviewed and discussed in the current work in order to contribute to knowledge of the molecular mechanisms involved in TTR amyloidosis and propose more efficient drugs for therapy.


Assuntos
Neuropatias Amiloides Familiares/genética , Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Pré-Albumina/química , Substituição de Aminoácidos , Neuropatias Amiloides Familiares/tratamento farmacológico , Animais , Curcumina/uso terapêutico , Humanos , Fármacos Neuroprotetores/uso terapêutico , Pré-Albumina/genética , Dobramento de Proteína/efeitos dos fármacos
6.
Biochim Biophys Acta ; 1862(4): 797-804, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26804653

RESUMO

Transthyretin (TTR) has a neuroprotective role in the central nervous system (CNS) in Alzheimer's disease (AD) and cerebral ischemia. Increased levels of TTR and activated insulin-like growth factor I receptor (IGF-IR) are associated with reduced neurodegeneration in an AD mouse model. In the present study, we found that TTR and IGF-I have a synergistic effect on activation of one of the IGF-IR signaling pathways. Hippocampus of TTR null mice present decreased levels of phosphorylated IGF-IR and Akt when compared with TTR wild type littermate animals. Cell studies reveal the synergistic effect of TTR and IGF-I in promoting IGF-IR signaling even under glutamate induced toxicity. TTR:IGF-IR complexes are identified and a bio-layer interferometry assay demonstrated an interaction between TTR and IGF-IR with a KD ranging from 99 to 744nM. In summary, our results point to a new TTR role through the IGF-I axis, mediated through TTR-IGF-IR interactions.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Pré-Albumina/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Fator de Crescimento Insulin-Like I/genética , Camundongos , Camundongos Knockout , Pré-Albumina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética
7.
J Neuroinflammation ; 14(1): 115, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28583160

RESUMO

BACKGROUND: Increasing evidence supports a key role for inflammation in the neurodegenerative process of familial amyloidotic polyneuropathy (FAP). While there seems to be an overactivation of the neuronal interleukin-1 signaling pathway, the immune response is apparently compromised in FAP. Accordingly, little immune cell infiltration is observed around pre-fibrillar or fibrillar amyloid deposits, with the underlying mechanism for this phenomenon remaining poorly understood. Cathepsin E (CtsE) is an important intermediate for antigen presentation and chemotaxis, but its role in the pathogenesis of FAP disease remains unknown. METHODS: In this study, we used both mouse primary macrophages and in vivo studies based on transgenic models of FAP and human samples to characterize CtsE expression in different physiological systems. RESULTS: We show that CtsE is critically decreased in bone marrow-derived macrophages from a FAP mouse model, possibly contributing for cell function impairment. Compromised levels of CtsE were also found in injured nerves of transgenic mice and, most importantly, in naïve peripheral nerves, sensory ganglia, murine stomach, and sural nerve biopsies derived from FAP patients. Expression of CtsE in tissues was associated with transthyretin (TTR) deposition and differentially regulated accordingly with the physiological system under study. Preventing deposition with a TTR small interfering RNA rescued CtsE in the peripheral nervous system (PNS). In contrast, the expression of CtsE increased in splenic cells (mainly monocytes) or peritoneal macrophages, indicating a differential macrophage phenotype. CONCLUSION: Altogether, our data highlights the potential of CtsE as a novel FAP biomarker and a possible modulator for innate immune cell chemotaxis to the disease most affected tissues-the peripheral nerve and the gastrointestinal tract.


Assuntos
Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/imunologia , Catepsina E/genética , Catepsina E/imunologia , Imunidade Celular/imunologia , Adulto , Neuropatias Amiloides Familiares/patologia , Animais , Catepsina E/biossíntese , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
8.
Am J Pathol ; 186(7): 1913-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27338109

RESUMO

Overwhelming data suggest that oncogenic and neurodegenerative pathways share several altered cellular responses to insults such as oxidative stress, extracellular matrix remodeling, inflammation, or cell dyscommunication. Protocadherin-10 (Pcdh10) is an adhesion molecule found to protect against tumorigenesis and essential for axonal elongation and actin dynamics during development. Here, by using genome microarrays we identified for the first time Pcdh10 up-regulation in tissues from transgenic mouse models, cultured Schwann cells, and human samples from a familial form of peripheral neuropathy (familial amyloidotic polyneuropathy). Familial amyloidotic polyneuropathy is characterized by poor functional recovery and impaired nerve regenerative response after misfolding and deposition in the peripheral nervous system of mutant transthyretin. Not only increased transcriptional and translational Pcdh10 levels occurred in axons and Schwann cells of nerves with deposited transthyretin aggregates but the pattern also extended to associated cues of axon guidance like neuropilin-1 and F-actin. These findings suggest that Pcdh10 may influence subcellular actin cytoskeletal organization and axon-axon interactions in the course of familial amyloidotic polyneuropathy. Moreover, when preventing nonfibrillar transthyretin deposition with anakinra or transthyretin siRNA, Pcdh10 protein levels were reduced, highlighting its potential as a novel disease biomarker. Whether Pcdh10 overexpression in familial amyloidotic polyneuropathy represents a protective or deleterious response, enhancing survival or promoting cell death will need further investigation.


Assuntos
Neuropatias Amiloides Familiares/metabolismo , Caderinas/biossíntese , Animais , Caderinas/análise , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Pré-Albumina/metabolismo , Protocaderinas , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
9.
Clin Sci (Lond) ; 130(18): 1665-75, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27382986

RESUMO

Transthyretin (TTR)-related amyloidoses are diseases characterized by extracellular deposition of amyloid fibrils and aggregates in tissues composed of insoluble misfolded TTR that becomes toxic. Previous studies have demonstrated the ability of small compounds in preventing and reversing TTR V30M deposition in transgenic mice gastrointestinal (GI) tract as well as lowering biomarkers associated with cellular stress and apoptotic mechanisms. In the present study we aimed to study TTR V30M aggregates effect in autophagy, a cellular mechanism crucial for cell survival that has been implicated in the development of several neurodegenerative diseases. We were able to demonstrate in cell culture that TTR V30M aggregates cause a partial impairment of the autophagic machinery as shown by p62 accumulation, whereas early steps of the autophagic flux remain unaffected as shown by autophagosome number evaluation and LC3 turnover assay. Our studies performed in TTR V30M transgenic animals demonstrated that tauroursodeoxycholic acid (TUDCA) and curcumin effectively reverse p62 accumulation in the GI tract pointing to the ability of both compounds to modulate autophagy additionally to mitigate apoptosis. Overall, our in vitro and in vivo studies establish an association between TTR V30M aggregates and autophagy impairment and suggest the use of autophagy modulators as an additional and alternative therapeutic approach for the treatment of TTR V30M-related amyloidosis.


Assuntos
Neuropatias Amiloides Familiares/fisiopatologia , Autofagia/efeitos dos fármacos , Curcumina/administração & dosagem , Pré-Albumina/química , Pré-Albumina/metabolismo , Ácido Tauroquenodesoxicólico/administração & dosagem , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Pré-Albumina/genética , Agregados Proteicos/efeitos dos fármacos
10.
J Nanobiotechnology ; 14(1): 60, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27455834

RESUMO

BACKGROUND: Amyloidoses are characterized by the extracellular deposition of insoluble fibrillar proteinaceous aggregates highly organized into cross-ß structure and referred to as amyloid fibrils. Nowadays, the diagnosis of these diseases remains tedious and involves multiple examinations while an early and accurate protein typing is crucial for the patients' treatment. Routinely used neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) using Pittsburgh compound B, [(11)C]PIB, provide structural information and allow to assess the amyloid burden, respectively, but cannot discriminate between different amyloid deposits. Therefore, the availability of efficient multimodal imaging nanoparticles targeting specific amyloid fibrils would provide a minimally-invasive imaging tool useful for amyloidoses typing and early diagnosis. In the present study, we have functionalized gadolinium-based MRI nanoparticles (AGuIX) with peptides highly specific for Aß amyloid fibrils, LPFFD and KLVFF. The capacity of such nanoparticles grafted with peptide to discriminate among different amyloid proteins, was tested with Aß(1-42) fibrils and with mutated-(V30M) transthyretin (TTR) fibrils. RESULTS: The results of surface plasmon resonance studies showed that both functionalized nanoparticles interact with Aß(1-42) fibrils with equilibrium dissociation constant (Kd) values of 403 and 350 µM respectively, whilst they did not interact with V30M-TTR fibrils. Similar experiments, performed with PIB, displayed an interaction both with Aß(1-42) fibrils and V30M-TTR fibrils, with Kd values of 6 and 10 µM respectively, confirming this agent as a general amyloid fibril marker. Thereafter, the ability of functionalized nanoparticle to target and bind selectively Aß aggregates was further investigated by immunohistochemistry on AD like-neuropathology brain tissue. Pictures clearly indicated that KLVFF-grafted or LPFFD-grafted to AGuIX nanoparticle recognized and bound the Aß amyloid plaque localized in the mouse hippocampus. CONCLUSION: These results constitute a first step for considering these functionalized nanoparticles as a valuable multimodal imaging tool to selectively discriminate and diagnose amyloidoses.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/química , Gadolínio/química , Hipocampo/metabolismo , Nanopartículas Metálicas/química , Fragmentos de Peptídeos/química , Placa Amiloide/diagnóstico por imagem , Pré-Albumina/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hipocampo/ultraestrutura , Humanos , Cinética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Mutação , Fragmentos de Peptídeos/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Pré-Albumina/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície
11.
Biochim Biophys Acta ; 1832(8): 1183-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23579071

RESUMO

Transthyretin (TTR) is a plasma and cerebrospinal fluid (CSF)-circulating homotetrameric protein. More than 100 point mutations have been identified in the TTR gene and several are related with amyloid diseases. Here we focused our attention in the TTR L12P variant associated with severe peripheral neuropathy and leptomeningeal amyloidosis. By using different cell lines derived from tissues specialized on TTR synthesis, such as the hepatocyte and the choroid plexus expressing WT, V30M, or L12P TTR variants we analyzed secretion, intracellular aggregation and degradation patterns. Also, we used liver-specific AAV gene transfer to assess expression of the L12P variant in vivo. We found the following: (i) decreased secretion with intracellular aggregation of TTR L12P in hepatoma cells relative to WT and V30M variant; this differential property of TTR L12P variant was also observed in mice injected with L12P AAV vector; (ii) differential N-glycosylation pattern of L12P variant in hepatoma cell lysates, conditioned media and mouse sera, which might represent an escape mechanism from ERAD degradation; (iii) intracellular L12P TTR aggregates mainly localized to lysosomes in cultured cells and liver; and (iv) none of the above findings were present in choroid plexus derived cells, suggesting particular secretion/quality control mechanisms that might contribute to leptomeningeal amyloidosis associated with the L12P variant. These observations open new avenues for the treatment of TTR associated leptomeningeal amyloidosis.


Assuntos
Fígado/fisiologia , Lisossomos/fisiologia , Pré-Albumina/biossíntese , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/patologia , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Autofagia/genética , Autofagia/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Glicosilação , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Pré-Albumina/genética , Pré-Albumina/metabolismo
12.
Biochim Biophys Acta ; 1832(1): 39-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23069388

RESUMO

The transthyretin amyloidoses (ATTR) are devastating diseases characterized by progressive neuropathy and/or cardiomyopathy for which novel therapeutic strategies are needed. We have recently shown that curcumin (diferuloylmethane), the major bioactive polyphenol of turmeric, strongly suppresses TTR fibril formation in vitro, either by stabilization of TTR tetramer or by generating nonfibrillar small intermediates that are innocuous to cultured neuronal cells. In the present study, we aim to assess the effect of curcumin on TTR amyloidogenesis in vivo, using a well characterized mouse model for familial amyloidotic polyneuropathy (FAP). Mice were given 2% (w/w) dietary curcumin or control diet for a six week period. Curcumin supplementation resulted in micromolar steady-state levels in plasma as determined by LC/MS/MS. We show that curcumin binds selectively to the TTR thyroxine-binding sites of the tetramer over all the other plasma proteins. The effect on plasma TTR stability was determined by isoelectric focusing (IEF) and curcumin was found to significantly increase TTR tetramer resistance to dissociation. Most importantly, immunohistochemistry (IHC) analysis of mice tissues demonstrated that curcumin reduced TTR load in as much as 70% and lowered cytotoxicity associated with TTR aggregation by decreasing activation of death receptor Fas/CD95, endoplasmic reticulum (ER) chaperone BiP and 3-nitrotyrosine in tissues. Taken together, our results highlight the potential use of curcumin as a lead molecule for the prevention and treatment of TTR amyloidosis.


Assuntos
Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/metabolismo , Amiloide/metabolismo , Curcumina/administração & dosagem , Pré-Albumina/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos
13.
Amyloid ; : 1-7, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946492

RESUMO

BACKGROUND: Genotyping and amyloid fibril detection in tissues are generally considered the diagnostic gold standard in transthyretin-related amyloidosis. Patients carry less stable TTR homotetramers prone to dissociation into non-native monomers, which rapidly self-assemble into oligomers and, ultimately, amyloid fibrils. Thus, the initial event of the amyloid cascade produces the smallest transthyretin species: the monomers. This creates engineering opportunities for diagnosis that remain unexplored. METHODS: We hypothesise that molecular sieving represents a promising method for isolating and concentrating trace TTR monomers from the tetramers present in plasma samples. Subsequently, immunodetection can be utilised to distinguish monomeric TTR from other low molecular weight proteins within the adsorbed fraction. A two-step assay was devised (ImmunoSieve assay), combining molecular sieving and immunodetection for sensing monomeric transthyretin. This assay was employed to analyse plasma microsamples from 10 individuals, including 5 pre-symptomatic carriers of TTR-V30M, the most prevalent amyloidosis-associated TTR variant worldwide, and 5 healthy controls. RESULTS: The ImmunoSieve assay enable sensitive detection of monomeric transthyretin in plasma microsamples. Moreover, the circulating monomeric TTR levels were significantly higher in carriers of amyloidogenic TTR mutation. CONCLUSIONS: Monomeric TTR can function as a biomarker for evaluating disease progression and assessing responses to therapies targeted at stabilising native TTR.

14.
Transgenic Res ; 22(1): 101-16, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22806634

RESUMO

Transthyretin related amyloidosis is a nosological entity that leads to disability, diminished quality of life, all stages of chronic kidney disease and eventually death. Podocytes are polarized, highly differentiated epithelial cells important for proper nephron function. In the present study we investigated whether deposited TTRVal30Met (TTRV30M) molecules could be localized within podocytes in situ under the effect of different housing conditions (i.e. specific pathogen free [SPF] vs. non-SPF). Murine renal glomeruli from human TTRV30M (hTTRV30M) transgenic mice were examined via direct and indirect immunofluorescence techniques for the presence of hTTRV30M, murine serum amyloid P, activated caspase-3 and NPHS1. Association strength and amount of colocalization for NPHS1-hTTRV30M, NPHS1-activated caspase-3, hTTRV30M-murine serum amyloid P were estimated. Localization of hTTRV30M in podocytes was demonstrated by immuno-electron microscopy. Renal hTTRV30M gene and NPHS1 gene expression levels were estimated. Non-SPF transgenic mice showed increased glomerular hTTRV30M deposition compared to their SPF counterparts. Furthermore increased podocytic localization of hTTRV30M was noticed in non-SPF mice. Glomerular caspase-3 activation was increased only in the non SPF housing conditions. Podocytic caspase-3 activation was increased in SPF and in non-SPF transgenic mice when compared to non transgenic controls. Environmental conditions influence glomerular deposition and podocytic localization of hTTRV30M. In this context increased caspase-3 activation occurred.


Assuntos
Neuropatias Amiloides Familiares , Nefropatias , Podócitos , Pré-Albumina , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/fisiopatologia , Animais , Caspase 3/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Interação Gene-Ambiente , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Podócitos/metabolismo , Podócitos/ultraestrutura , Pré-Albumina/genética , Pré-Albumina/metabolismo
15.
Front Mol Biosci ; 10: 1144049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968272

RESUMO

Introduction: Cardiac amyloidoses are the most fatal manifestation of systemic amyloidoses. It is believed the number of cases to be greatly underestimated mostly due to misdiagnosis. Particularly, the involvement of TTR V30M in the heart of ATTRV30M amyloidosis has not been completely understood specifically in terms of implicated cellular pathways, heart function and cardiac physiology. In the present work we proposed to characterize TTR V30M cardiac involvement particularly at the tissue cellular level in a mouse model. Methods: HSF ± hTTR V30M mice, a model that expresses human TTRV30M in a Ttr null background, widely used for the characterization and modulation of neurological features of ATTRV30M amyloidosis was used. SDS-PAGE of cardiac homogenates followed by Western blot was performed. Immunohistochemistry and double immunofluorescence analyses were carried out to determine TTR deposition pattern and sub-localization. Results: Western blots were able to detect TTR in its monomeric state at ∼14 kDa. Immunofluorescent images showed TTR was found mostly in the intercellular spaces. Blood contamination was excluded by CD31 staining. Tissues were Congo Red negative. Upon TTR and macrophages (CD68) staining in the cardiac tissue a clear tendency of macrophage convergence to the tissue regions where TTR was more abundant was observed. Moreover, in some instances it was possible to detect co-localization of both fluorophores. Cardiac fibroblasts were stained with PDGFr-alpha, and here the co-localization was not so evident although there was some degree of co-occurrence. The hearts of transgenic mice revealed higher content of Galectin-3. Conclusion: This animal model and associated features observed as result of cardiac TTR deposition provide a promising and invaluable research tool for a better understanding of the implicated pathways that lead to the lethality associated to TTR cardiac amyloidosis. New therapeutic strategies can be tested and ultimately this will lead to improved treatment alternatives capable of increasing patient's quality of life and life expectancy and, hopefully to eradicate a condition that is silently spreading worldwide.

16.
Amyloid ; 30(3): 327-334, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36947059

RESUMO

INTRODUCTION: Hereditary Transthyretin Amyloidosis is a rare, progressive and life-threatening systemic disease with predominant peripheral and autonomic nervous system involvement caused by mutation of the transthyretin protein. The most common TTR mutation regarding to ATTRv is a substitution of a Methionine for a Valine at position 30 that predisposes TTR to form aggregates and fibrils. METHODS: S100A8 protein levels were measured in plasma samples from ATTRV30M patients and healthy donors. Additionally, S100A8/9 levels were measured in Schwann cells after incubation with human WT or V30M TTR. Moreover, bone marrow derived macrophages of either genetic background were generated and the expression of S100A8/9 was measured in response to toll like receptors agonists. RESULTS: S100A8/A9 mRNA levels are decreased in HSF V30M mice as compared with the WT. Moreover, S100A8 protein levels were found downregulated in plasma samples from ATTRV30M patients. Furthermore, we provide evidence for a dysregulated S100 expression by Schwann cells in response to TTRV30M and by mutated macrophages in response to toll like receptors agonists. CONCLUSION: The presence of TTRV30M impacts S100 expression, possibly contributing to the impaired immune activation of Schwann cells in nerves from ATTRV30M patients. This may be linked to the diminished immune cellular infiltration in these nerves, contributing in this way for the neuronal dysfunction present in the disease.


Assuntos
Neuropatias Amiloides Familiares , Calgranulina A , Calgranulina B , Pré-Albumina , Animais , Feminino , Humanos , Masculino , Camundongos , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/patologia , Calgranulina A/genética , Calgranulina B/genética , Regulação para Baixo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Sistema Nervoso Periférico/metabolismo , Pré-Albumina/genética , Células de Schwann/metabolismo
17.
J Biol Chem ; 286(43): 37525-34, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21865159

RESUMO

The receptor for advanced glycation end products (RAGE) is a multiligand cell surface receptor involved in various human diseases, as it binds to numerous molecules and proteins that modulate the activity of other proteins. Elucidating the three-dimensional structure of this receptor is therefore most important for understanding its function during activation and cellular signaling. The major alternative splice product of RAGE comprises its extracellular region that occurs as a soluble protein (sRAGE). Although the structures of sRAGE domains were available, their assembly into the functional full-length protein remained unknown. We observed that the protein has concentration-dependent oligomerization behavior, and this is also mediated by the presence of Ca(2+) ions. Moreover, using synchrotron small angle x-ray scattering, the solution structure of human sRAGE was determined in the monomeric and dimeric forms. The model for the monomer displays a J-like shape, whereas the dimer is formed through the association of the two N-terminal domains and has an elongated structure. These results provide insights into the assembly of the RAGE homodimer, which is essential for signal transduction, and the sRAGE:RAGE heterodimer that leads to blockage of the receptor signaling, paving the way for the design of therapeutic strategies for a large number of different pathologies.


Assuntos
Cálcio/química , Multimerização Proteica/fisiologia , Receptores Imunológicos/química , Cálcio/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia , Solubilidade , Relação Estrutura-Atividade
18.
Front Immunol ; 12: 650269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093538

RESUMO

Inflammation is a hallmark of several neurodegenerative disorders including hereditary amyloidogenic transthyretin amyloidosis (ATTRv). ATTRv is an autosomal dominant neurodegenerative disorder with extracellular deposition of mutant transthyretin (TTR) aggregates and fibrils, particularly in nerves and ganglia of the peripheral nervous system. Nerve biopsies from ATTRv patients show increased cytokine production, but interestingly no immune inflammatory cellular infiltrate is observed around TTR aggregates. Here we show that as compared to Wild Type (WT) animals, the expression of several chemokines is highly downregulated in the peripheral nervous system of a mouse model of the disease. Interestingly, we found that stimulation of mouse Schwann cells (SCs) with WT TTR results in the secretion of several chemokines, a process that is mediated by toll-like receptor 4 (TLR4). In contrast, the secretion of all tested chemokines is compromised upon stimulation of SCs with mutant TTR (V30M), suggesting that V30M TTR fails to activate TLR4 signaling. Altogether, our data shed light into a previously unappreciated mechanism linking TTR activation of SCs and possibly underlying the lack of inflammatory response observed in the peripheral nervous system of ATTRv patients.


Assuntos
Neuropatias Amiloides Familiares/imunologia , Quimiocinas/metabolismo , Regulação para Baixo/imunologia , Pré-Albumina/genética , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Mutação , Pré-Albumina/isolamento & purificação , Pré-Albumina/metabolismo , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células de Schwann/imunologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/imunologia , Nervo Isquiático/patologia , Receptor 4 Toll-Like/metabolismo
19.
J Neurochem ; 115(6): 1434-44, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21044072

RESUMO

Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke. Transthyretin (TTR) is normally responsible for the transport of thyroid hormones and retinol in the blood and CSF. We found that TTR null mice (TTR(-/-) ) did not show significant differences in cortical infarction 24 h after permanent middle cerebral artery occlusion compared with TTR(+/+) control littermates. However, TTR null mice, heterozygous for the heat-shock transcription factor 1 (TTR(-/-) HSF1(+/-) mice), which compromised the stress response, showed a significant increase in cortical infarction, cerebral edema and the microglial-leukocyte response compared with TTR(+/+) HSF1(+/-) mice. Unexpectedly, we observed novel TTR distribution throughout the infarct, localized to disintegrated ß-tubulin III(+) neurons and cell debris. Specific elimination of TTR synthesis in the liver by RNAi had no effect on TTR distribution in the infarct, indicating that the observed TTR infiltration derived from CSF and not from the serum. This finding is corroborated by results from 'in situ' hybridization and real time PCR that excluded the presence of transthyretin mRNA in the infarct and peri-infarct areas. Our data suggest that in conditions of a compromised heat-shock response, CSF TTR contributes to control neuronal cell death, edema and inflammation, thereby influencing the survival of endangered neurons in cerebral ischemia.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Fármacos Neuroprotetores/líquido cefalorraquidiano , Pré-Albumina/líquido cefalorraquidiano , Animais , Biomarcadores/líquido cefalorraquidiano , Isquemia Encefálica/líquido cefalorraquidiano , Morte Celular/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia
20.
Chembiochem ; 11(13): 1905-13, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20661987

RESUMO

The amyloid-beta peptide (Abeta) is a major fibrillar component of neuritic plaques in Alzheimer's disease brains and is related to the pathogenesis of the disease. Soluble oligomers that precede fibril formation have been proposed as the main neurotoxic species that contributes to neurodegeneration and dementia. We hypothesize that oligomerization and cytotoxicity can be repressed by nanoparticles (NPs) that induce conformational changes in Abeta42. We show here that fluorinated and hydrogenated NPs with different abilities to change Abeta42 conformation influence oligomerization as assessed by atomic force microscopy, immunoblot and SDS-PAGE. Fluorinated NPs, which promote an increase in alpha-helical content, exert an antioligomeric effect, whereas hydrogenated analogues do not and lead to aggregation. Cytotoxicity assays confirmed our hypothesis by indicating that the conformational conversion of Abeta42 into an alpha-helical-enriched secondary structure also has antiapoptotic activity, thereby increasing the viability of cells treated with oligomeric species.


Assuntos
Peptídeos beta-Amiloides/química , Flúor/química , Nanopartículas/química , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/toxicidade , Calorimetria , Linhagem Celular Tumoral , Humanos , Microscopia de Força Atômica , Fragmentos de Peptídeos/toxicidade , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA