Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(37): 13948-13958, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37671477

RESUMO

Humic-like substances (HULIS), known for their substantial impact on the atmosphere, are identified in marine diesel engine emissions obtained from five different fuels at two engine loads simulating real world scenarios as well as the application of wet sulfur scrubbers. The HULIS chemical composition is characterized by electrospray ionization (ESI) ultrahigh resolution mass spectrometry and shown to contain partially oxidized alkylated polycyclic aromatic compounds as well as partially oxidized aliphatic compounds, both including abundant nitrogen- and sulfur-containing species, and clearly different to HULIS emitted from biomass burning. Fuel properties such as sulfur content and aromaticity as well as the fuel combustion efficiency and engine mode are reflected in the observed HULIS composition. When the marine diesel engine is operated below the optimum engine settings, e.g., during maneuvering in harbors, HULIS-C emission factors are increased (262-893 mg kg-1), and a higher number of HULIS with a shift toward lower degree of oxidation and higher aromaticity is detected. Additionally, more aromatic and aliphatic CHOS compounds in HULIS were detected, especially for high-sulfur fuel combustion. The application of wet sulfur scrubbers decreased the HULIS-C emission factors by 4-49% but also led to the formation of new HULIS compounds. Overall, our results suggest the consideration of marine diesel engines as a relevant regional source of HULIS emissions.


Assuntos
Atmosfera , Navios , Biomassa , Substâncias Húmicas , Enxofre
2.
Anal Chem ; 88(1): 640-4, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26606252

RESUMO

The design of the so-called "Peltier modulator" is presented. It is a new dual-stage consumable-free thermal modulator for thermal analysis-gas chromatography-mass spectrometry (TA-GC-MS). It requires only electrical power for operation as it facilitates thermo-electric coolers instead of cryogenics for trapping and resistive on-column heating for reinjection. Trapping and desorption temperatures as well as modulation cycles are freely adjustable. The stationary phase for the trapping region can be selected to suit the specific application, since common fused silica capillary is used. The Peltier modulator's performance is demonstrated with a broad range of different standard substances and with heavy crude oil as a complex real life sample. Successful modulation from n-pentane to pyrene (boiling points = 36/394 °C) is presented. The produced peaks show the narrowest bandwidths ever reported for a consumable-free thermal modulator, i.e., 12.8 ± 1.2 ms for n-pentadecane. The Peltier modulator is rugged, cost-effective, requires low maintenance, and decreases security issues significantly, compared to commercial available solutions using liquid N2/CO2.

3.
Anal Chem ; 88(6): 3031-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26810390

RESUMO

Fast and selective detectors are very interesting for comprehensive two-dimensional gas chromatography (GC × GC). This is particularly true if the detector system can provide additional spectroscopic information on the compound structure and/or functionality. Other than mass spectrometry (MS), only optical spectroscopic detectors are able to provide selective spectral information. However, until present the application of optical spectroscopy technologies as universal detectors for GC × GC has been restricted mainly due to physical limitations such as insufficient acquisition speed or high detection limits. A recently developed simultaneous-detection spectrometer working in the vacuum ultraviolet (VUV) region of 125-240 nm overcomes these limitations and meets all the criteria of a universal detector for GC × GC. Peak shape and chromatographic resolution is preserved and unique spectral information, complementary to mass spectrometry data, is gained. The power of this detector is quickly recognized as it has the ability to discriminate between isomeric compounds or difficult to separate structurally related isobaric species; thus, it provides additional selectivity. A further promising feature of this detector is the data analysis concept of spectral filtering, which is accomplished by targeting special electronic transitions that allows for a fast screening of GC × GC chromatograms for designated compound classes.

4.
Anal Chem ; 87(17): 8634-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26226397

RESUMO

This work describes an ultrafast-cycling gas chromatography module (fast-GC module) for direct-sampling gas chromatography/mass spectrometry (GC-MS). The sample can be introduced into the fast-GC module using a common GC injector or any GC × GC modulator. The new fast-GC module offers the possibility to conduct a complete temperature cycle within 30 s. Its thermal mass is minimized by using a specially developed home-built fused silica capillary column stack and a halogen lamp for heat generation, both placed inside a gold-coated quartz glass cylinder. A high airflow blower enables rapid cooling. The new device is highly flexible concerning the used separation column, the applied temperature program, and the integration into existing systems. An application of the fast-GC module is shown in this work by thermal analysis coupled to gas chromatography-mass spectrometry (TA-GC-MS). The continuously evolving gases of the TA are modulated by a liquid CO2 modulator. Because of the rapid cycling of the fast-GC module, it is possible to obtain the best separation while maintaining the online character of the TA. Restrictions in separation and retention time shifting, known from isothermal and normal ramped fast-GC systems, are overcome.

5.
Environ Pollut ; 316(Pt 1): 120526, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341831

RESUMO

The emissions of marine diesel engines have gained both global and regional attentions because of their impact on human health and climate change. To reduce ship emissions, the International Maritime Organization capped the fuel sulfur content of marine fuels. Consequently, either low-sulfur fuels or additional exhaust gas cleaning devices for the reduction in sulfur dioxide (SO2) emissions became mandatory. Although a wet scrubber reduces the amount of SO2 significantly, there is still a need to consider the reduction in particle emissions directly. We present data on the particle removal efficiency of a scrubber regarding particle number and mass concentration with different marine fuel types, marine gas oil, and two heavy fuel oils (HFOs). An open-loop sulfur scrubber was installed in the exhaust line of a marine diesel test engine. Fine particulate matter was comprehensively characterized in terms of its physical and chemical properties. The wet scrubber led up to a 40% reduction in particle number, whereas a reduction in particle mass emissions was not generally determined. We observed a shift in the size distribution by the scrubber to larger particle diameters when the engine was operated on conventional HFOs. The reduction in particle number concentrations and shift in particle size were caused by the coagulation of soot particles and formation/growing of sulfur-containing particles. Combining the scrubber with a wet electrostatic precipitator as an additional abatement system showed a reduction in particle number and mass emission factors by >98%. Therefore, the application of a wet scrubber for the after-treatment of marine fuel oil combustion will reduce SO2 emissions, but it does not substantially affect the number and mass concentration of respirable particulate matters. To reduce particle emission, the scrubber should be combined with additional abatement systems.


Assuntos
Poluentes Atmosféricos , Óleos Combustíveis , Aerossóis , Poluentes Atmosféricos/análise , Gasolina/análise , Material Particulado/análise , Enxofre/análise , Emissões de Veículos/análise
6.
Anal Chem ; 82(23): 9644-53, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21043436

RESUMO

Multi-dimensional analysis (MDA) in analytical chemistry is often applied to improve the selectivity of an analytical device and, therefore, to achieve a better overview of a sample composition. Recently, the hyphenation of thermogravimetry with single photo ionization mass spectrometry (TG-SPIMS) using an electron beam pumped excimer lamp (EBEL) for VUV radiation was applied. The concept of MDA has been realized by upgrading the TG-SPIMS system with a quasi comprehensive chromatographic separation step before the soft ionization (TG-GCxSPIMS). The system was characterized by the thermal analysis of diesel fuel, which has often been investigated by the GCxGC-community and is therefore a well-known sample material in MDA. Data from this measurement are used to explain the three-dimensional data structure and the advantages of the online TG-GCxSPIMS as compared to TG-SPIMS. Subsequently, the thermal decomposition behavior of a polymer, acrylonitrile-butadiene-styrene (ABS), is investigated. TG-GCxSPIMS provides a two-dimensional analysis of the evolved gaseous products. TG relevant data are obtained as well as an improved resolution power to separate isobaric molecular structures without losing any fraction of the samples, as is often the case in heart cutting approaches. Additionally, this solution is not associated with any extension of the measurement time. The assignment of the substance pattern to distinct species is improved as compared to solely using mass spectrometry without a preceding separation step. Furthermore, hitherto undetected compounds have been found in the evolved gases from the thermal degradation of ABS. Finally, a first estimation of the limit of detection has been carried out. This results in a significant decrease of the LOD in case of TG-GCxSPIMS (500 ppt for toluene) as compared to 30 ppb, which could be reached with TG-SPIMS.

7.
Talanta ; 202: 308-316, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171187

RESUMO

Comprehensive chemical investigation of non-volatile complex mixtures, without extensive sample pretreatment, remains challenging due to the high number of constituents with different chemical properties. In past years, direct high-resolution mass spectrometry established itself as powerful technique for the detailed molecular description of ultra-complex mixtures, but was mainly used with atmospheric pressure ionization. In this study, we present a direct inlet approach with vacuum ionization and high-resolution time-of-flight mass spectrometry. Exemplary, the non-volatile fractions of crude oil were directly inserted into the ion source and volatilized under reduced pressure conditions. An applied temperature gradient enabled thermal pre-separation, according to volatility, prior to electron ionization and mass spectrometric detection. With exact mass information, peaks were assigned to elemental compositions and grouped into component classes. Moreover, the application of supervised and unsupervised statistical tools allowed differentiation of the samples on a molecular level and the identification and attribution of significant chemical features.

8.
J Phys Chem B ; 122(37): 8738-8749, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130967

RESUMO

Ionic liquids are often considered as green alternatives of volatile organic solvents. The thermal behavior of the ionic liquids is relevant for a number of emerging large-scale applications at elevated temperature. Knowledge about the degradation products is indispensable for treatment and recycling of the used ionic liquids. The objective of this paper was an investigation of the short- and long-term stability of several 1-alkyl-3-methylimidazolium halides, determination of the degradation products, and the elucidation of their decomposition patterns and structure-stability relations. Short-term stability and mechanism of thermal degradation were investigated by a self-developed, innovative thermal analysis single-photon ionization time-of-flight mass spectrometry device with Skimmer coupling. The applied technology provides real-time monitoring of the forming species and allows tracing their change during the course of the decomposition. Therein, the almost fragment-free soft ionization with vacuum ultraviolet photons plays a crucial role. We have detected unfragmented molecules whose formation was only assumed by electron ionization. Nevertheless, the main decomposition products of the selected ionic liquids were alkyl imidazoles, alkenes, alkyl halides, and hydrogen halides. From the decomposition products, we have deduced the fragmentation patterns and discussed their interrelation with the length of the alkyl chain and the type of the halide anion. Our results did not suggest the evaporation of the investigated ionic liquids prior to their decomposition under atmospheric conditions. Long-term thermal stability and applicability were determined based on thermogravimetric analysis evaluated with a kinetic model. Thus, the time-dependent maximum operation temperature (MOT) for the respective ionic liquids has been calculated. As a rule, the short-term stability overestimates the long-term decomposition temperatures; the calculated MOT are significantly lower (at least 100 K) than the standardly obtained decomposition temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA