Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279335

RESUMO

Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.


Assuntos
Neoplasias Encefálicas , Gangliosídeos , Humanos , Gangliosídeos/química , Encéfalo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem
2.
Electrophoresis ; 44(5-6): 501-520, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36416190

RESUMO

The expression of gangliosides in central nervous system is a few times higher than in the extraneural tissue, a characteristic highlighting their major role at this level. Although in very low amounts, gangliosides are ubiquitously distributed in body fluids too, where, depending on many factors, including pathological states, their composition fluctuates, thus having diagnostic value. Ganglioside investigation in biological fluids, which, except for cerebrospinal fluid (CSF), may be sampled noninvasively, was for years impeded by the limited sensitivity of the analytical instrumentation available in glycomics. However, because the last decade has witnessed significant developments in biological mass spectrometry (MS) and the hyphenated separation techniques, marked by a major increase in sensitivity, reproducibility, and data reliability, ganglioside research started to be focused on biofluid analysis by separation techniques coupled to MS. In this context, our review presents the achievements in this emerging field of gangliosidomics, with a particular emphasis on modern liquid chromatography (LC), thin-layer chromatography, hydrophilic interaction LC, and ion mobility separation coupled to high-performance MS, as well as the results generated by these systems and allied experimental procedures in profiling and structural analysis of gangliosides in healthy or diseased body fluids, such as CSF, plasma/serum, and milk.


Assuntos
Líquidos Corporais , Gangliosídeos , Gangliosídeos/análise , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Líquidos Corporais/química
3.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054879

RESUMO

Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer's and Parkinson's diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.


Assuntos
Biomarcadores Tumorais/metabolismo , Encefalopatias/metabolismo , Gangliosídeos/metabolismo , Espectrometria de Massas , Gangliosídeos/química , Humanos
4.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164008

RESUMO

Gangliosides (GGs) represent an important class of biomolecules associated with the central nervous system (CNS). In view of their special role at a CNS level, GGs are valuable diagnostic markers and prospective therapeutic agents. By ion mobility separation mass spectrometry (IMS MS), recently implemented by us in the investigation of human CNS gangliosidome, we previously discovered a similarity between GG profiles in CSF and the brain. Based on these findings, we developed IMS tandem MS (MS/MS) to characterize rare human CSF glycoforms, with a potential biomarker role. To investigate the oligosaccharide and ceramide structures, the ions detected following IMS MS separation were submitted to structural analysis by collision-induced dissociation (CID) MS/MS in the transfer cell. The IMS evidence on only one mobility feature, together with the diagnostic fragment ions, allowed the unequivocal identification of isomers in the CSF. Hence, by IMS MS/MS, GalNAc-GD1c(d18:1/18:1) and GalNAc-GD1c(d18:1/18:0) having both Neu5Ac residues and GalNAc attached to the external galactose were for the first time discovered and structurally characterized. The present results demonstrate the high potential of IMS MS/MS for biomarker discovery and characterization in body fluids, and the perspectives of method implementation in clinical analyses targeting the early diagnosis of CNS diseases through molecular fingerprints.


Assuntos
Glicoesfingolipídeos/líquido cefalorraquidiano , Glicoesfingolipídeos/química , Ácido N-Acetilneuramínico/química , Adulto , Sequência de Carboidratos , Gangliosídeos/líquido cefalorraquidiano , Gangliosídeos/química , Humanos , Espectrometria de Mobilidade Iônica , Isomerismo , Meningite/líquido cefalorraquidiano , Meningite/diagnóstico , Modelos Moleculares , Ácido N-Acetilneuramínico/líquido cefalorraquidiano , Espectrometria de Massas em Tandem/métodos
5.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144762

RESUMO

Chondroitin sulfate (CS) and dermatan sulfate (DS) are found in nature linked to proteoglycans, most often as hybrid CS/DS chains. In the extracellular matrix, where they are highly expressed, CS/DS are involved in fundamental processes and various pathologies. The structural diversity of CS/DS domains gave rise to efforts for the development of efficient analytical methods, among which is mass spectrometry (MS), one of the most resourceful techniques for the identification of novel species and their structure elucidation. In this context, we report here on the introduction of a fast, sensitive, and reliable approach based on ion mobility separation (IMS) MS and MS/MS by collision-induced dissociation (CID), for the profiling and structural analysis of CS/DS hexasaccharide domains in human embryonic kidney HEK293 cells decorin (DCN), obtained after CS/DS chain releasing by ß-elimination, depolymerization using chondroitin AC I lyase, and fractionation by size-exclusion chromatography. By IMS MS, we were able to find novel CS/DS species, i.e., under- and oversulfated hexasaccharide domains in the released CS/DS chain. In the last stage of analysis, the optimized IMS CID MS/MS provided a series of diagnostic fragment ions crucial for the characterization of the misregulations, which occurred in the sulfation code of the trisulfated-4,5-Δ-GlcAGalNAc[IdoAGalNAc]2 sequence, due to the unusual sulfation sites.


Assuntos
Sulfatos de Condroitina , Liases , Sulfatos de Condroitina/química , Decorina , Dermatan Sulfato/química , Células HEK293 , Humanos , Proteoglicanas/química , Espectrometria de Massas em Tandem/métodos
6.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566027

RESUMO

Considering the valuable information provided by glycosphingolipids as molecular markers and the limited data available for their detection and characterization in patients suffering from Type 2 diabetic kidney disease (DKD), we developed and implemented a superior method based on high-resolution (HR) mass spectrometry (MS) and tandem MS (MS/MS) for the determination of gangliosides in the urine of DKD patients. This study was focused on: (i) testing of the HR MS and MS/MS feasibility and performances in mapping and sequencing of renal gangliosides in Type 2 DM patients; (ii) determination of the changes in the urine gangliosidome of DKD patients in different stages of the disease-normo-, micro-, and macroalbuminuria-in a comparative assay with healthy controls. Due to the high resolution and mass accuracy, the comparative MS screening revealed that the sialylation status of the ganglioside components; their modification by O-acetyl, CH3COO-, O-fucosyl, and O-GalNAc; as well as the composition of the ceramide represent possible markers for early DKD detection, the assessment of disease progression, and follow-up treatment. Moreover, structural investigation by MS/MS demonstrated that GQ1d(d18:1/18:0), GT1α(d18:1/18:0) and GT1b(d18:1/18:0) isomers are associated with macroalbuminuria, meriting further investigation in relation to their role in DKD.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Biomarcadores/análise , Diabetes Mellitus Tipo 2/complicações , Gangliosídeos/química , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
7.
Electrophoresis ; 42(4): 429-449, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314304

RESUMO

Gangliosides are particularly abundant in the nervous system (NS) where their pattern and structure in a certain milieu or a defined region exhibit a pronounced specificity. Since gangliosides are useful biomarkers for diagnosis of NS ailments, a clear-cut mapping of individual components represents a prerequisite for designing ganglioside-based diagnostic procedures, treatments, or vaccines. These bioclinical aspects and the high diversity of ganglioside species claim for development of specific analytical strategies. This review summarizes the state-of-the-art in the implementation of separation techniques and microfluidics coupled to MS, which have contributed significantly to the advancement of the field. In the first part, the review discusses relevant approaches based on HPLC MS and CE coupled to ESI MS and their applications in the characterization of gangliosides expressed in healthy and diseased NS. A considerable section is dedicated to microfluidics MS and ion mobility separation MS, developed for the study of brain gangliosidome and its changes triggered by various factors, as well as for ganglioside biomarker discovery in neurodegenerative diseases and brain cancer. In the last part of the review, the benefits and perspectives in ganglioside research of these high-performance techniques are presented.


Assuntos
Gangliosídeos , Glicômica/métodos , Técnicas Analíticas Microfluídicas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores/análise , Biomarcadores/química , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Gangliosídeos/análise , Gangliosídeos/química , Gangliosídeos/metabolismo , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/metabolismo
8.
Anal Biochem ; 609: 113976, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987010

RESUMO

In this study we have optimized nanoelectrospray ionization (nanoESI) high resolution mass spectrometry (HR MS) performed on Orbitrap instrument in the negative ion mode for the determination of the composition and structure of gangliosides extracted from human brain cavernous hemangioma. The optimized HR MS platform, allowed the discrimination of 62 ions, corresponding to 52 different ganglioside species, which represents roughly twice the number of species existing in the current inventory of human brain hemangioma-associated gangliosides. The experiments revealed a ganglioside pattern dominated by GD-type of structures as well as an elevated incidence of species characterized by a low degree of sialylation and short glycan chains, including asialo GA1 (d18:1/18:0), which offer a new perspective upon the ganglioside composition in this benign tumor. Many of the structures are characteristic for this type of tumor only and are to be considered in further investigations for their potential use in early brain hemangioma diagnosis based on molecular markers. The detailed fragmentation analysis performed by collision-induced dissociation (CID) tandem MS provided information of structural elements related to the glycan core and ceramide moiety, which confirmed the molecular configuration of GD3 (d18:1/24:1) and GD3 (d18:1/24:2) species with potential biomarker role.


Assuntos
Encéfalo/metabolismo , Gangliosídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores/análise , Neoplasias do Sistema Nervoso Central/metabolismo , Ceramidas/química , Gangliosídeos/química , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Nanotecnologia
9.
Adv Exp Med Biol ; 1140: 703-729, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347080

RESUMO

Considering the devastating effects of neurodegenerative disorders and the increasing number of people affected by them, an early diagnosis even presymptomatic, prior to serious mental deterioration is necessary. Therefore, screening for biomarkers, especially glycolipids, in the biological matrices, either tissues or body fluids has proven to be of a great help in establishing an early diagnosis of the disease.The present chapter, divided into three parts, highlights the implementation and modern applications of the most avant-garde mass spectrometry (MS) techniques characterized by speed, sensitivity and data accuracy for de novo identification and monitoring of glycolipids with potential biomarker role. The first section reviews the etiology, epidemiology, clinical picture, as well as the current diagnostic methods for four of the most frequent neurodegenerative disorders: Parkinson's disease, Alzheimer's disease, Lewy body dementia and fronto-temporal dementia. The second section is dedicated to the role of glycolipids as biomarkers of these severe conditions. In the last part of the chapter, the state of the art in terms of mass spectrometry techniques for the detection of extremely valuable glycolipid biomarkers is described in detail. The proficiency of the MS, to be considered as and further developed into a routine method for early detection of neurodegenerative disorders, is also emphasized in the chapter.


Assuntos
Biomarcadores/análise , Glicolipídeos/análise , Espectrometria de Massas , Doenças Neurodegenerativas/diagnóstico , Humanos
10.
Electrophoresis ; 39(9-10): 1155-1170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355989

RESUMO

Glycolipids (GLs), involved in biological processes and pathologies, such as viral, neurodegenerative and oncogenic transformations are in the focus of research related to method development for structural analysis. This review highlights modern separation techniques coupled to mass spectrometry (MS) for the investigation of GLs from various biological matrices. First section is dedicated to methods, which, although provide the separation in a non-liquid phase, are able to supply important data on the composition of complex mixtures. While classical thin layer chromatography (TLC) is useful for MS analyses of the fractionated samples, ultramodern ion mobility (IMS) characterized by high reproducibility facilitates to discover minor species and to apply low sample amounts, in addition to providing conformational separation with isomer discrimination. Second section highlights the advantages, applications and limitations of liquid-based separation techniques such as high performance liquid chromatography (HPLC) and hydrophilic interaction liquid chromatography (HILIC) in direct or indirect coupling to MS for glycolipidomics surveys. The on- and off-line capillary electrophoresis (CE) MS, offering a remarkable separation efficiency of GLs is also presented and critically assessed from the technical and application perspective in the final part of the review.


Assuntos
Eletroforese Capilar/métodos , Glicolipídeos/análise , Glicolipídeos/isolamento & purificação , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
11.
Analyst ; 143(21): 5234-5246, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30272072

RESUMO

Clustered into the so-called "glycosynaptic" microdomains in the central nervous system (CNS), gangliosides (GGs) are involved in the formation of functional synapses and neural circuits. Therefore, GGs are important biomarkers in the early diagnosis of CNS pathologies, which are the focus of our research as potential therapeutic targets. A series of neuropsychiatric disorders, including Alzheimer's disease and schizophrenia, are characterized by amnesia and disorientation caused by hippocampal atrophy and diminished cholinergic activity. Based on ion mobility mass spectrometry (IM-MS) capability for the reliable determination of glycopatterns, the changes in the diversity and number of GGs with age and the occurrence of neurological disorders, we report here the development of a high performance IM-MS strategy for assessing the GG profile in a complex mixture extracted from a 20 year old hippocampus. IM separation of GGs based on the charge state, carbohydrate chain length and degree of sialylation led to the detection and identification of 140 species, the largest number of GGs ever reported in an adult hippocampus. Moreover, the obtained data support the concept of GG cholinergic activity. IM tandem MS experiments using collision induced dissociation (CID) confirmed the incidence of GD1b(d18:1/24:1) in the investigated hippocampus specimen.


Assuntos
Gangliosídeos/química , Hipocampo/química , Adulto , Gangliosídeos/isolamento & purificação , Humanos , Espectrometria de Massas/métodos , Estrutura Molecular , Adulto Jovem
12.
Anal Biochem ; 521: 40-54, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28088450

RESUMO

The gangliosides (GGs) of the central nervous system (CNS) exhibit age and topographic specificity and these patterns may correlate with the functions and pathologies of the brain regions. Here, chloroform extraction, nanoelectrospray (nanoESI) negative ionization, together with Orbitrap high resolution mass spectrometry (MS) determined the topographic and age-related GG specificity in normal adult human brain. Mapping of GG mixtures extracted from 20 to 82 year old frontal and occipital lobes revealed besides a decrease in the GG number with age, a variability of sialylation degree within the brain regions. From the 111 species identified, 105 were distinguished in the FL20, 74 in OL20, 46 in FL82 and 56 in OL82. The results emphasize that within the juvenile brain, GG species exhibit a higher expression in the FL than in OL, while in the aged brain the number of GG species is higher in the OL. By applying MS/MS analysis, the generated fragment ions confirmed the incidence of GT1c (d18:1/18:0) and GT1c (d18:1/20:0) in the investigated samples. The present findings are of major value for further clinical studies carried out using Orbitrap MS in order to correlate gangliosides with CNS disorders.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Gangliosídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Anal Chem ; 88(10): 5166-78, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27088833

RESUMO

The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.


Assuntos
Gangliosídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Ceramidas/química , Lobo Frontal/química , Galactosamina/química , Humanos , Estrutura Molecular
14.
Rapid Commun Mass Spectrom ; 29(21): 1929-37, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26443390

RESUMO

RATIONALE: Schindler disease is caused by the deficient activity of α-N-acetylgalactosaminidase, which leads to an abnormal accumulation of O-glycopeptides in tissues and body fluids. In this work the Schindler condition is for the first time approached by ion mobility (IMS) tandem mass spectrometry (MS/MS), for determining urine glycopeptide fingerprints and discriminate isomeric structures. METHODS: IMS-MS experiments were conducted on a Synapt G2s mass spectrometer operating in negative ion mode. A glycopeptide mixture extracted from the urine of a patient suffering from Schindler disease was dissolved in methanol and infused into the mass spectrometer by electrospray ionization using a syringe-pump system. MS/MS was performed by collision-induced dissociation (CID) at low energies, after mobility separation in the transfer cell. Data acquisition and processing were performed using MassLynx and Waters Driftscope software. RESULTS: IMS-MS data indicated that the attachment of one or two amino acids to the carbohydrate backbone has a minimal influence on the molecule conformation, which limits the discrimination of the free oligosaccharides from the glycosylated amino acids and dipeptides. The structural analysis by CID MS/MS in combination with IMS-MS of species exhibiting the same m/z but different configurations demonstrated for the first time the presence of positional isomers for some of the Schindler disease biomarker candidates. CONCLUSIONS: The IMS-MS and CID MS/MS platform was for the first time optimized and applied to Schindler disease glycourinome. By this approach the separation and characterization of Neu5Ac positional isomers was possible. IMS CID MS/MS showed the ability to determine the type of the glycopeptide isomers from a series of possible candidates.


Assuntos
Glicopeptídeos/química , Glicopeptídeos/urina , Doenças por Armazenamento dos Lisossomos/urina , Distrofias Neuroaxonais/urina , Espectrometria de Massas em Tandem/métodos , alfa-N-Acetilgalactosaminidase/deficiência , Pré-Escolar , Humanos , Isomerismo , Masculino , alfa-N-Acetilgalactosaminidase/urina
15.
Glycoconj J ; 31(3): 231-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658680

RESUMO

In this study we report on the first mass spectrometric (MS) investigation of gangliosides and preliminary assessment of the expression and structure in normal fetal neocortex in early developmental stages: 14th (Neo14) and 16th (Neo16) gestational weeks. Ganglioside analysis was carried out using a hybrid quadrupole time-of-flight (QTOF) MS with direct sample infusion by nanoelectrospray ionization (nanoESI) in the negative ion mode. Under optimized conditions a large number of glycoforms i.e. 75 in Neo14 and 71 in Neo16 mixtures were identified. The ganglioside species were found characterized by a high diversity of the ceramide constitution, an elevated sialylation degree (up to pentasialylated gangliosides-GP1) and sugar cores modified by fucosylation (Fuc) and acetylation (O-Ac). Direct comparison between Neo14 and Neo16 revealed a prominent expression of monosialylated structures in the Neo16 as well as the presence of a larger number of polysialylated species in Neo14 which constitutes a clear marker of rapid development-dependant changes in the sialylation. Also the MS screening results highlighted that presumably O-acetylation process occurs faster than fucosylation. CID MS/MS under variable collision energy applied for the first time for structural analysis of a fucosylated pentasialylated species induced an efficient fragmentation with generation of ions supporting Fuc-GP1d isomer in early stage fetal brain neocortex.


Assuntos
Gangliosídeos/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Espectrometria de Massas em Tandem/métodos , Acetilação , Densitometria/métodos , Gangliosídeos/análise , Idade Gestacional , Humanos , Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
Amino Acids ; 46(7): 1625-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687149

RESUMO

Electron transfer dissociation (ETD) has been developed recently as an efficient ion fragmentation technique in mass spectrometry (MS), being presently considered a step forward in proteomics with real perspectives for improvement, upgrade and application. Available also on affordable ion trap mass spectrometers, ETD induces specific N-Cα bond cleavages of the peptide backbone with the preservation of the post-translational modifications and generation of product ions that are diagnostic for the modification site(s). In addition, in the last few years ETD contributed significantly to the development of top-down approaches which enable tandem MS of intact protein ions. The present review, covering the last 5 years highlights concisely the major achievements and the current applications of ETD fragmentation technique in proteomics. An ample part of the review is dedicated to ETD contribution in the elucidation of the most common posttranslational modifications, such as phosphorylation and glycosylation. Further, a brief section is devoted to top-down by ETD method applied to intact proteins. As the last few years have witnessed a major expansion of the microfluidics systems, a few considerations on ETD in combination with chip-based nanoelectrospray (nanoESI) as a platform for high throughput top-down proteomics are also presented.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Sequência de Aminoácidos , Transporte de Elétrons , Glicopeptídeos/análise , Glicopeptídeos/metabolismo , Glicosilação , Espectrometria de Massas/instrumentação , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
17.
J Am Soc Mass Spectrom ; 35(4): 683-695, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518248

RESUMO

The human cerebellum is an ultraspecialized region of the brain responsible for cognitive functions and movement coordination. The fine mechanisms through which the process of aging impacts such functions are not well understood; therefore, a rigorous exploration of this brain region at the molecular level is deemed necessary. Gangliosides, sialylated glycosphingolipids, highly and specifically expressed in the human central nervous system, represent possible molecular markers of cerebellum development and aging. In this context, for a comprehensive determination of development- and age-specific components, we have conducted here a comparative profiling and structural determination of the gangliosides expressed in fetal cerebellum in two intrauterine developmental stages and aged cerebellum by ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS). Due to the high sensitivity and efficiency of separation provided by IMS MS, no less than 551 chemically distinct species were identified, which represents 4.5 times more gangliosides than ever discovered in this brain region. The detailed assessment of fetal vs aged cerebellum gangliosidome showed marked discrepancies not only in the general number of the species expressed, but also in their sialylation patterns, the modifications of the glycan core, and the composition of the ceramides. All of these characteristics are potential markers of cerebellum development and aging. The structural analysis by collision-induced dissociation (CID) documented the occurrence of GD1b (d18:1/18:0) isomer in the fetal cerebellum in the second gestational trimester, with all probability of GQ1b (t18:1/18:0) in the near-term fetus and of GQ1b (d18:1/18:0) in aged cerebellum.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Humanos , Idoso , Espectrometria de Massas por Ionização por Electrospray/métodos , Gangliosídeos/análise , Encéfalo , Cerebelo
18.
J Mass Spectrom ; 58(3): e4908, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36799777

RESUMO

Biglycan (BGN), a small leucine-rich repeat proteoglycan, is involved in a variety of pathological processes including malignant transformation, for which the upregulation of BGN was found related to cancer cell invasiveness. Because the functions of BGN are mediated by its chondroitin/dermatan sulfate (CS/DS) chains through the sulfates, the determination of CS/DS structure and sulfation pattern is of major importance. In this study, we have implemented an advanced glycomics method based on ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS) to characterize the CS disaccharide domains in BGN. The high separation efficiency and sensitivity of this technique allowed the discrimination of five distinct CS disaccharide motifs, of which four irregulated in their sulfation pattern. For the first time, trisulfated unsaturated and bisulfated saturated disaccharides were found in BGN, the latter species documenting the non-reducing end of the chains. The structural investigation by IMS MS/MS disclosed that in one or both of the CS/DS chains, the non-reducing end is 3-O-sulfated GlcA in a rather rare bisulfated motif having the structure 3-O-sulfated GlcA-4-O-sulfated GalNAc. Considering the role played by BGN in cancer cell spreading, the influence on this process of the newly identified sequences will be investigated in the future.


Assuntos
Sulfatos de Condroitina , Espectrometria de Massas em Tandem , Sulfatos de Condroitina/química , Biglicano , Dissacarídeos/química , Dermatan Sulfato/análise , Dermatan Sulfato/química , Glicômica
19.
J Am Soc Mass Spectrom ; 32(5): 1249-1257, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900081

RESUMO

Glioblastoma multiforme (GBM), a malignant, highly aggressive, grade IV brain tumor, which rapidly infiltrates into the nearby tissue, has drawn a significant amount of attention because of its poor prognosis and the limited treatment options available. In GBM, nearly all tumor cells exhibit aberrant cell-surface glycosylation patterns due to the alteration of their biosynthesis or postsynthesis modification process. Since gangliosides (GGs) are acknowledged as tumor-associated antigens, we have carried out here a comprehensive profiling of native ganglioside mixtures extracted and purified from GBM specimens. For this purpose, high performance ion mobility separation mass spectrometry (IMS MS) was thoroughly optimized to allow the discovery of GBM-specific structures and the assessment of their roles as tumor markers or possible associated antigens. GG separation by IMS according to the charge state, carbohydrate chain length, degree of sialylation, and ceramide composition led to the identification of no less than 160 distinct components, which represents 3-fold the number of structures identified before. The detected GGs and asialo-GGs were found characterized by a high heterogeneity in their ceramide and glycan compositions, encompassing up five Neu5Ac residues. The tumor was found dominated in equal and high proportions by GD3 and GT1 forms, with a particular incidence of C24:1 fatty acids in the ceramide. By the occurrence of only one mobility feature and the diagnostic fragment ions, the IMS tandem MS conducted using collision-induced dissociation (CID) disclosed for the first time the presence of GT1c(d18:1/24:1) newly proposed here as a potential GBM marker.


Assuntos
Neoplasias Encefálicas/química , Gangliosídeos/análise , Glioblastoma/química , Espectrometria de Massas em Tandem/métodos , Gangliosídeos/química , Humanos , Espectrometria de Mobilidade Iônica/métodos
20.
Biochimie ; 177: 226-237, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32853705

RESUMO

Malignant melanoma is an aggressive type of skin cancer, rarely detected in the early stages. Various sets of methods and techniques, including dermatoscopical inspection of the "ABCDE" signs of the lesion, imaging techniques or microscopical, immunohistochemical and serological biomarkers are available and used nowadays to diagnose malignant melanoma. To date, different biomarkers were proposed for melanoma, but only a few, including circulating proteins, such as lactate dehydrogenase, molecular and metabolite biomarkers, have reached clinical applications. Gangliosides represent an emerging class, being used as tumor markers and targets of antibody therapy in melanomas, based on their elevated abundance in melanoma, especially of GM3 and GD3, when compared with the corresponding normal tissues. The conjunction of mass spectrometry (MS) with ion mobility separation (IMS) demonstrated an elevated potential in detection and identification of low abundant components, with biomarker role, in extremely complex biological mixtures. Therefore, here, a native ganglioside extract originating from human melanoma was investigated for the first time by IMS MS to provide the first profiling of gangliosides in this type of cancer. The present approach revealed the high incidence of species belonging to GD3 and GM3 classes, as well as of de-N-acetyl GM3 (d-GM3) and de-N-acetyl GD3 (d-GD3), characteristic for human melanoma. Additionally, the structure of two molecules characterized by shorter glycan chains associated to melanoma, were investigated in detail. The present approach brings valuable data related to this type of cancer, completing the existing inventory of melanoma-associated biomarkers and opens new directions for further research in this field.


Assuntos
Gangliosídeos/análise , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Melanoma/diagnóstico , Melanoma/metabolismo , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Adulto , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Gangliosídeos/química , Humanos , Masculino , Polissacarídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA