Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(6): e14195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519718

RESUMO

BACKGROUND: Oestrogen deficiency increases bone resorption, contributing to osteoporosis development. Yet, the mechanisms mediating the effects of oestrogen on osteoclasts remain unclear. This study aimed to elucidate the early metabolic alteration induced by RANKL, the essential cytokine in osteoclastogenesis and 17-beta-oestradiol (E2) on osteoclast progenitor cells, using RAW 264.7 macrophage cell line and primary bone marrow-derived macrophages as biological models. RESULTS: This research demonstrated that, in osteoclast precursors, RANKL stimulates complex I activity, oxidative phosphorylation (OXPHOS) and mitochondria-derived ATP production as early as 3 h of exposure. This effect on mitochondrial bioenergetics is associated with an increased capacity to oxidize TCA cycle substrates, fatty acids and amino acids. E2 inhibited all effects of RANKL on mitochondria metabolism. In the presence of RANKL, E2 also decreased cell number and stimulated the mitochondrial-mediated apoptotic pathway, detected as early as 3 h. Further, the pro-apoptotic effects of E2 during osteoclast differentiation were associated with an accumulation of p392S-p53 in mitochondria. CONCLUSIONS: These findings elucidate the early effects of RANKL on osteoclast progenitor metabolism and suggest novel p53-mediated mechanisms that contribute to postmenopausal osteoporosis.


Assuntos
Diferenciação Celular , Estradiol , Mitocôndrias , Osteoclastos , Proteína Supressora de Tumor p53 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Estradiol/farmacologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7 , Proteína Supressora de Tumor p53/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982784

RESUMO

Metabolic reprogramming is a central hub in tumor development and progression. Therefore, several efforts have been developed to find improved therapeutic approaches targeting cancer cell metabolism. Recently, we identified the 7α-acetoxy-6ß-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz) as a PKCδ-selective activator with potent anti-proliferative activity in colon cancer by stimulating a PKCδ-dependent mitochondrial apoptotic pathway. Herein, we investigated whether the antitumor activity of Roy-Bz, in colon cancer, could be related to glucose metabolism interference. The results showed that Roy-Bz decreased the mitochondrial respiration in human colon HCT116 cancer cells, by reducing electron transfer chain complexes I/III. Consistently, this effect was associated with downregulation of the mitochondrial markers cytochrome c oxidase subunit 4 (COX4), voltage-dependent anion channel (VDAC) and mitochondrial import receptor subunit TOM20 homolog (TOM20), and upregulation of synthesis of cytochrome c oxidase 2 (SCO2). Roy-Bz also dropped glycolysis, decreasing the expression of critical glycolytic markers directly implicated in glucose metabolism such as glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4), and increasing TP53-induced glycolysis and apoptosis regulator (TIGAR) protein levels. These results were further corroborated in tumor xenografts of colon cancer. Altogether, using a PKCδ-selective activator, this work evidenced a potential dual role of PKCδ in tumor cell metabolism, resulting from the inhibition of both mitochondrial respiration and glycolysis. Additionally, it reinforces the antitumor therapeutic potential of Roy-Bz in colon cancer by targeting glucose metabolism.


Assuntos
Neoplasias do Colo , Complexo IV da Cadeia de Transporte de Elétrons , Humanos , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glicólise , Respiração
3.
Eur J Clin Invest ; 52(3): e13731, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34890043

RESUMO

BACKGROUND: The prevalence and severity of nonalcoholic fatty liver disease (NAFLD) increase in women after menopause. This narrative review discusses the causes and consequences of NAFLD in postmenopausal women and describes how physical activity can contribute to its prevention. METHODS: The authors followed the narrative review method to perform a critical and objective analysis of the current knowledge on the topic. The Medical Subject Heading keywords 'physical exercise', 'menopause', 'hormone replacement therapy', 'estradiol' and 'NAFLD' were used to establish a conceptual framework. The databases used to collect relevant references included Medline and specialized high-impact journals. RESULTS: Higher visceral adiposity, higher rate of lipolysis in adipose tissue after oestrogen drop and changes in the expression of housekeeping proteins involved in hepatic lipid management are observed in women after menopause, contributing to NAFLD. Excessive liver steatosis leads to hepatic insulin resistance, oxidative stress and inflammation, accelerating NAFLD progression. Physical activity brings beneficial effects against several postmenopausal-associated complications, including NAFLD progression. Aerobic and resistance exercises partially counteract alterations induced by metabolic syndrome in sedentary postmenopausal women, impacting NAFLD progression and severity. CONCLUSIONS: With the increased global obesity epidemic in developing countries, NAFLD is becoming a severe problem with increased prevalence in women after menopause. Evidence shows that physical activity may delay NAFLD development and severity in postmenopausal women, although the prescription of age-appropriate physical activity programmes is advisable to assure the health benefits.


Assuntos
Exercício Físico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Feminino , Humanos , Pós-Menopausa
4.
Circ Res ; 126(7): 926-941, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32213135

RESUMO

Anthracycline-based chemotherapy can result in the development of a cumulative and progressively developing cardiomyopathy. Doxorubicin is one of the most highly prescribed anthracyclines in the United States due to its broad spectrum of therapeutic efficacy. Interference with different mitochondrial processes is chief among the molecular and cellular determinants of doxorubicin cardiotoxicity, contributing to the development of cardiomyopathy. The present review provides the basis for the involvement of mitochondrial toxicity in the different functional hallmarks of anthracycline toxicity. Our objective is to understand the molecular determinants of a progressive deterioration of functional integrity of mitochondria that establishes a historic record of past drug treatments (mitochondrial memory) and renders the cancer patient susceptible to subsequent regimens of drug therapy. We focus on the involvement of doxorubicin-induced mitochondrial oxidative stress, disruption of mitochondrial oxidative phosphorylation, and permeability transition, contributing to altered metabolic and redox circuits in cardiac cells, ultimately culminating in disturbances of autophagy/mitophagy fluxes and increased apoptosis. We also suggest some possible pharmacological and nonpharmacological interventions that can reduce mitochondrial damage. Understanding the key role of mitochondria in doxorubicin-induced cardiomyopathy is essential to reduce the barriers that so dramatically limit the clinical success of this essential anticancer chemotherapy.


Assuntos
Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/intoxicação , Apoptose/efeitos dos fármacos , Cardiomiopatias/induzido quimicamente , Doxorrubicina/intoxicação , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
5.
Pharmacol Res ; 180: 106151, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35247601

RESUMO

For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle (RV) dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated disks and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.


Assuntos
Cardiomiopatias , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Conexina 43 , Modelos Animais de Doenças , Eucaliptol/uso terapêutico , Ventrículos do Coração/metabolismo , Homeostase , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Disfunção Ventricular Direita/metabolismo
6.
Eur J Clin Invest ; 51(5): e13485, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33393082

RESUMO

The new coronavirus (SARS-CoV-2) appearance in Wuhan, China, did rise the new virus disease (COVID-19), which spread globally in a short time, leading the World Health Organization to declare a new global pandemic. To contain and mitigate the spread of SARS-CoV-2, specific public health procedures were implemented in virtually all countries, with a significant impact on society, making it difficult to keep the regular practice of physical activity. It is widely accepted that an active lifestyle contributes to the improvement of general health and preservation of cardiovascular, respiratory, osteo-muscular and immune system capacities. The positive effects of regular physical activity on the immune system have emerged as a pivotal trigger of general health, underlying the beneficial effects of physical activity on multiple physiological systems. Accordingly, recent studies have already pointed out the negative impact of physical inactivity caused by the social isolation imposed by the public sanitary authorities due to COVID-19. Nevertheless, there are still no current narrative reviews evaluating the real impact of COVID-19 on active lifestyle or even discussing the possible beneficial effects of exercise-promoted immune upgrade against the severity or progression of COVID-19. Based on the consensus in the scientific literature, in this review, we discuss how an exercise adherence could adequately improve immune responses in times of the 'COVID-19 Era and beyond'.


Assuntos
COVID-19 , Exercício Físico/fisiologia , Imunidade/imunologia , Inflamação/imunologia , Leucócitos/imunologia , Controle de Doenças Transmissíveis , Citocinas/imunologia , Hormônios Esteroides Gonadais/imunologia , Humanos , Hidrocortisona/imunologia , Células Matadoras Naturais/imunologia , Neutrófilos/imunologia , Cooperação do Paciente , Fagocitose/imunologia , Política Pública , SARS-CoV-2 , Comportamento Sedentário , Linfócitos T/imunologia
7.
Eur J Clin Invest ; 51(2): e13375, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32780417

RESUMO

BACKGROUND: Changes in the nutritional environment in utero induced by maternal obesity (MO) lead to foetal metabolic dysfunction predisposing offspring to later-life metabolic diseases. Since mitochondria play a crucial role in hepatic metabolism and function, we hypothesized that MO prior to conception and throughout pregnancy programmes foetal sheep liver mitochondrial phenotype. MATERIAL AND METHODS: Ewes ate an obesogenic diet (150% requirements; MO), or 100% requirements (CTR), from 60 days prior to conception. Foetal livers were removed at 0.9 gestation. We measured foetal liver mitochondrial DNA copy number, activity of superoxide dismutase, cathepsins B and D and selected protein content, total phospholipids and cardiolipin and activity of mitochondrial respiratory chain complexes. RESULTS: A significant decrease in activities of mitochondrial complexes I, II-III and IV, but not aconitase, was observed in MO. In the antioxidant machinery, there was a significant increase in activity of total superoxide dismutase (SOD) and SOD2 in MO. However, no differences were found regarding autophagy-related protein content (p62, beclin-I, LC3-I, LC3-II and Lamp2A) and cathepsin B and D activities. A 21.5% decrease in total mitochondrial phospholipid was observed in MO. CONCLUSIONS: The data indicate that MO impairs foetal hepatic mitochondrial oxidative capacity and affects total mitochondrial phospholipid content. In addition, MO affects the regulation of foetal liver redox pathways, indicating metabolic adaptations to the higher foetal lipid environment. Consequences of in utero programming of foetal hepatic metabolism may persist and compromise mitochondrial bioenergetics in later life, and increase susceptibility to metabolic diseases.


Assuntos
Autofagia/fisiologia , Transporte de Elétrons/fisiologia , Feto/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Obesidade Materna/metabolismo , Animais , Proteína Beclina-1/metabolismo , Cardiolipinas/metabolismo , Catepsina B/metabolismo , Catepsina D/metabolismo , Feminino , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfolipídeos/metabolismo , Gravidez , Ovinos , Superóxido Dismutase/metabolismo
9.
Arch Toxicol ; 91(3): 1261-1278, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27358235

RESUMO

Sirtuins regulate several processes associated with tumor development. Resveratrol was shown to stimulate sirtuin 1 and 3 (SIRT1/3) activities and to result in cytotoxicity for some tumor types. The relationship between modulation of sirtuin activities, cellular metabolic remodeling and resveratrol cytotoxicity mechanism on breast cancer cells is still an open question. Here, we evaluated whether sirtuin 1 and 3 are involved in resveratrol toxicity and whether resveratrol leads to a metabolic remodeling and cell differentiation. Results using the Extracellular Flux Analyzer indicated that resveratrol inhibits mitochondrial respiration in breast cancer cells. We also demonstrated here for the first time that resveratrol cytotoxic effects on breast cancer cells were modulated by SIRT1 and also involved mitochondrial complex I inhibition. Importantly, we also demonstrated that resveratrol reduced the pool of breast cancer cells with stemness markers through a SIRT1-dependent mechanism. Our data highlights the role of SIRT1 in regulating resveratrol induced differentiation and/or toxicity in breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Células MCF-7/efeitos dos fármacos , Células MCF-7/metabolismo , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Ratos Wistar , Resveratrol , Sirtuína 1/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo
10.
Eur J Clin Invest ; 46(3): 285-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26782788

RESUMO

BACKGROUND: The employment of dietary strategies such as ketogenic diets, which force cells to alter their energy source, has shown efficacy in the treatment of several diseases. Ketogenic diets are composed of high fat, moderate protein and low carbohydrates, which favour mitochondrial respiration rather than glycolysis for energy metabolism. DESIGN: This review focuses on how oncological, neurological and mitochondrial disorders have been targeted by ketogenic diets, their metabolic effects, and the possible mechanisms of action on mitochondrial energy homeostasis. The beneficial and adverse effects of the ketogenic diets are also highlighted. RESULTS AND CONCLUSIONS: Although the full mechanism by which ketogenic diets improve oncological and neurological conditions still remains to be elucidated, their clinical efficacy has attracted many new followers, and ketogenic diets can be a good option as a co-adjuvant therapy, depending on the situation and the extent of the disease.


Assuntos
Dieta Cetogênica/métodos , Epilepsia/dietoterapia , Doenças Mitocondriais/dietoterapia , Neoplasias/dietoterapia , Metabolismo Energético , Glicólise , Humanos , Mitocôndrias/metabolismo , Doenças do Sistema Nervoso/dietoterapia
11.
Biochim Biophys Acta ; 1842(12 Pt A): 2468-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283819

RESUMO

The cardiotoxicity induced by the anti-cancer doxorubicin involves increased oxidative stress, disruption of calcium homeostasis and activation of cardiomyocyte death. Nevertheless, antioxidants and caspase inhibitors often show little efficacy in preventing cell death. We hypothesize that a caspase-independent cell death mechanism with the release of the apoptosis-inducing factor from mitochondria is involved in doxorubicin toxicity. To test the hypothesis, H9c2 cardiomyoblasts were used as model for cardiac cells. Our results demonstrate that z-VAD-fmk, a pan-caspase inhibitor, does not prevent doxorubicin toxicity in this cell line. Doxorubicin treatment results in AIF translocation to the nuclei, as confirmed by Western Blotting of cell fractions and confocal microscopy. Also, doxorubicin treatment of H9c2 cardiomyoblasts resulted in the appearance of 50kbp DNA fragments, a hallmark of apoptosis-inducing factor nuclear effects. Apoptosis-inducing factor knockdown using a small-interfering RNA approach in H9c2 cells resulted in a reduction of doxorubicin toxicity, including decreased p53 activation and poly-ADP-ribose-polymerase cleavage. Among the proteases that could be responsible for apoptosis-inducing factor cleavage, doxorubicin decreased calpain activity but increased cathepsin B activation, with inhibition of the latter partly decreasing doxorubicin toxicity. Altogether, the results support that apoptosis-inducing factor release is involved in doxorubicin-induced H9c2 cell death, which explains the limited ability of caspase inhibitors to prevent toxicity.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/genética , Fator de Indução de Apoptose/genética , Western Blotting , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Interferência de RNA , Ratos , Fatores de Tempo
12.
Eur J Clin Invest ; 45 Suppl 1: 44-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25524586

RESUMO

BACKGROUND: Abnormal mitochondrial function has long been associated with the development and the progression of cancer. Multiple defects in the mitochondrial genome have been reported for various cancers, however the often disregarded mitochondrial epigenetic landscape provides an additional source of deregulation that may contribute to carcinogenesis. DESIGN: This article reviews the current understanding of mitochondrial epigenetics and how it may relate to cancer progression and development. Relevant studies were found through electronic databases (Web of Science and PubMed). RESULTS AND CONCLUSIONS: The remarkably unexplored field of mitochondrial epigenetics has the potential to shed light on several cancer-related mitochondrial abnormalities. More studies using innovative, genome-wide sequencing technologies are highly warranted to assess whether and how altered mtDNA methylation patterns affect cancer initiation and progression.


Assuntos
DNA Mitocondrial/genética , Epigênese Genética , Mitocôndrias/genética , Neoplasias/genética , Metilação de DNA , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo
13.
Mech Ageing Dev ; 218: 111912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266781

RESUMO

The global population over 60 years old is projected to reach 1.5 billion by 2050. Understanding age-related disorders and gender-specificities is crucial for a healthy aging. Reliable age-related biomarkers are needed, preferentially obtained through non-invasive methods. Urine-derived stem cells (UDSCs) can be easily obtained, although a detailed bioenergetic characterization, according to the donor aging, remain unexplored. UDSCs were isolated from young and elderly adult women (22-35 and 70-94 years old, respectively). Surprisingly, UDSCs from elderly subjects exhibited significantly higher maximal oxygen consumption and bioenergetic health index than those from younger individuals, evaluated through oxygen consumption rate. Exploratory data analysis methods were applied to engineer a minimal subset of features for the classification and stratification of UDSCs. Additionally, RNAseq of UDSCs was performed to identify age-related transcriptional changes. Transcriptional analysis revealed downregulation of genes related to glucuronidation and estrogen metabolism, and upregulation of inflammation-related genes in UDSCs from elderly individuals. This study demonstrates unexpected differences in the UDSCs' OCR between young and elderly individuals, revealing improved bioenergetics in concurrent with an aged-like transcriptome signature. UDSCs offer a non-invasive model for studying age-related changes, holding promise for aging research and therapeutic studies.


Assuntos
Metabolismo Energético , Transcriptoma , Idoso , Humanos , Feminino , Envelhecimento/genética , Envelhecimento/metabolismo , Biomarcadores/metabolismo , Células-Tronco/metabolismo
14.
Biochem Pharmacol ; 219: 115953, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036191

RESUMO

The pharmacological interest in mitochondria is very relevant since these crucial organelles are involved in the pathogenesis of multiple diseases, such as cancer. In order to modulate cellular redox/oxidative balance and enhance mitochondrial function, numerous polyphenolic derivatives targeting mitochondria have been developed. Still, due to the drug resistance emergence in several cancer therapies, significant efforts are being made to develop drugs that combine the induction of mitochondrial metabolic reprogramming with the ability to generate reactive oxygen species, taking into consideration the varying metabolic profiles of different cell types. We previously developed a mitochondria-targeted antioxidant (AntiOxCIN6) by linking caffeic acid to lipophilic triphenylphosphonium cation through a 10-carbon aliphatic chain. The antioxidant activity of AntiOxCIN6 has been documented but how the mitochondriotropic compound impact energy metabolism of both normal and cancer cells remains unknown. We demonstrated that AntiOxCIN6 increased antioxidant defense system in HepG2 cells, although ROS clearance was ineffective. Consequently, AntiOxCIN6 significantly decreased mitochondrial function and morphology, culminating in a decreased capacity in complex I-driven ATP production without affecting cell viability. These alterations were accompanied by an increase in glycolytic fluxes. Additionally, we demonstrate that AntiOxCIN6 sensitized A549 adenocarcinoma cells for CIS-induced apoptotic cell death, while AntiOxCIN6 appears to cause metabolic changes or a redox pre-conditioning on lung MRC-5 fibroblasts, conferring protection against cisplatin. We propose that length and hydrophobicity of the C10-TPP+ alkyl linker play a significant role in inducing mitochondrial and cellular toxicity, while the presence of the antioxidant caffeic acid appears to be responsible for activating cytoprotective pathways.


Assuntos
Antioxidantes , Doenças Mitocondriais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cisplatino/farmacologia , Metabolismo Energético , Espécies Reativas de Oxigênio/metabolismo , Doenças Mitocondriais/metabolismo , Pulmão/metabolismo
15.
ACS Pharmacol Transl Sci ; 7(5): 1637-1649, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751615

RESUMO

Nitrocatechols are the standard pharmacophore to develop potent tight-binding inhibitors of catechol O-methyltransferase (COMT), which can be used as coadjuvant drugs to manage Parkinson's disease. Tolcapone is the most potent drug of this class, but it has raised safety concerns due to its potential to induce liver damage. Tolcapone-induced hepatotoxicity has been attributed to the nitrocatechol moiety; however, other nitrocatechol-based COMT inhibitors, such as entacapone, are safe and do not damage the liver. There is a knowledge gap concerning which mechanisms and chemical properties govern the toxicity of nitrocatechol-based COMT inhibitors. Using a vast array of cell-based assays, we found that tolcapone-induced toxicity is caused by direct interference with mitochondria that does not depend on bioactivation by P450. Our findings also suggest that (a) lipophilicity is a key property in the toxic potential of nitrocatechols; (b) the presence of a carbonyl group directly attached to the nitrocatechol ring seems to increase the reactivity of the molecule, and (c) the presence of cyano moiety in double bond stabilizes the reactivity decreasing the cytotoxicity. Altogether, the fine balance between lipophilicity and the chemical nature of the C1 substituents of the nitrocatechol ring may explain the difference in the toxicological behavior observed between tolcapone and entacapone.

16.
Cell Death Dis ; 15(3): 200, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459002

RESUMO

During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability.


Assuntos
Mioblastos , Transdução de Sinais , Autofagia/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Camundongos
17.
J Appl Toxicol ; 33(6): 434-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22095756

RESUMO

The most significant toxicological effect of nitrosamines like N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) is their carcinogenic activity, which may result from exposure to a single large dose or from chronic exposure to relatively small doses. However, its effects on mitochondrial liver bioenergetics were never investigated. Liver is the principal organ responsible for BBN metabolic activation, and mitochondria have a central function in cellular energy production, participating in multiple metabolic pathways. Therefore any negative effect on mitochondrial function may affect cell viability. In the present work, ICR male mice were given 0.05% of BBN in drinking water for a period of 12 weeks and were sacrificed one week later. Mitochondrial physiology was characterized in BBN- and control-treated mice. Transmembrane electric potential developed by mitochondria was significantly affected when pyruvate-malate was used, with an increase in state 4 respiration observed for pyruvate-malate (46%) and succinate (38%). A decrease in the contents of one subunit of mitochondrial complex I and in one subunit of mitochondrial complex IV was also observed. In addition, the activity of both complexes I and II was also decreased by BBN treatment. The treatment with BBN increases the susceptibility of liver mitochondria to the opening of the mitochondrial permeability transition pore. This susceptibility could be related with the increase in the production of H2 O2 by mitochondria and increased oxidative stress confirmed by augmented susceptibility to lipid peroxidation. These results lead to the conclusion that hepatic mitochondria are one primary target for BBN toxic action during liver metabolism.


Assuntos
Butilidroxibutilnitrosamina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Western Blotting , Butilidroxibutilnitrosamina/metabolismo , Cálcio/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glutationa/metabolismo , Crescimento/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Permeabilidade , Superóxido Dismutase/metabolismo
18.
Front Endocrinol (Lausanne) ; 14: 1110369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152948

RESUMO

Introduction: Estrogens inhibit bone resorption and preserve bone mass, at least in part, via direct effects on osteoclasts. The binding of RANKL, the critical cytokine for osteoclast differentiation, to its receptor in osteoclast precursor cells of the monocyte lineage recruits the adaptor protein TRAF6 and activates multiple signaling pathways. Early effects of RANKL include stimulation of mitochondria. 17ß-estradiol (E2) prevents the effects of RANKL on mitochondria and promotes mitochondria mediated apoptotic cell death. However, the molecular mechanisms responsible for the actions of RANKL and estrogens on mitochondria remain unknown. Evolutionarily Conserved Signaling Intermediate in Toll Pathway (ECSIT) is a complex I-associated protein that regulates immune responses in macrophages following the engagement of Toll-like receptors, which also recruit TRAF6. Here, we examined whether ECSIT could be implicated in the rapid effects of RANKL and E2 on osteoclast progenitors. Methods: Bone marrow-derived macrophages (BMMs) from C57BL/6 mice were cultured with RANKL (30 ng/ml) with or without E2 (10-8 M). ECSIT-TRAF6 interaction was evaluated by co-immunoprecipitation and ECSIT levels in mitochondria and cytosolic fractions by Western blot. ShRNA lentivirus particles were used to knockdown ECSIT. Osteoclasts were enumerated after tartrate-resistant acid phosphatase staining. Oxygen consumption and extracellular acidification rates were measured with Seahorse XFe96 Analyzer. ATP, lactate, and NAD/NADH were measured with commercial assay kits. NADH oxidation to NAD was used to evaluate Complex I activity. Total and mitochondrial ROS, and mitochondrial membrane potential were measured with H2DCFDA, MitoSOX, and TMRM probes, respectively. Degradation of DEVD-AFC was used to measure Caspase-3 activity. Results: We found that RANKL promoted ECSIT-TRAF6 interaction and increased the levels of ECSIT in mitochondria. E2 abrogated these effects of RANKL. Silencing of ECSIT decreased osteoclast differentiation and abrogated the inhibitory effects of E2 on osteoclastogenesis. Loss of ECSIT decreased complex I activity, oxygen consumption, NAD+/NADH redox ratio, and ATP production and increased mitochondrial ROS. In the absence of ECSIT, the stimulatory actions of RANKL on complex I activity and all other markers of oxidative phosphorylation, as well as their inhibition by E2, were prevented. Instead, RANKL stimulated apoptosis of osteoclast progenitors. Discussion: These findings suggest that dysregulated mitochondria cause a switch in RANKL signaling from pro-survival to pro-apoptotic. In addition, our results indicate that ECSIT represents a central node for the early effects of RANKL on mitochondria and that inhibition of ECSIT-mediated mitochondria stimulation might contribute to the bone protective actions of estrogens.


Assuntos
NAD , Osteogênese , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/fisiologia , Estrogênios/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NAD/metabolismo , Osteoclastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
19.
Nutrients ; 15(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36839282

RESUMO

Obesity, a rising concern in the Eastern world, encompasses several co-morbidities, namely non-alcoholic fatty liver disease (NAFLD). Potential natural-based interventions to decrease the burden of obesity complications are being investigated. Many of the edible parts of plants are not sold for consumption and end up as massive waste, losing nutritional potential. In fact, a sizeable amount of waste is generated within the different steps of the food supply chain, representing a massive loss of both plant material and natural resources. A good example is Brassica by-products (BBPs). The objective of this work was to investigate the effect of three different extracts from broccoli (Brassica oleracea var italica) by-products in an in vitro model of free fatty acid (FFA)-induced lipotoxicity using human hepatoma HepG2 cells. Broccoli leaf, stalk, and inflorescence extracts induced a dose-dependent decrease in the cell viability of HepG2 cells. However, the maximal non-lethal concentrations of leaves, stalks, and inflorescences (10 µg/mL) did not compromise mitochondrial function or neutral lipid accumulation in HepG2 cells. The extracts significantly decreased FFA-induced lipid accumulation in HepG2 cells either in a co-incubation or pre-incubation strategy. The broccoli extracts' capacity to prevent the FFA-induced decrease in catalase activity in HepG2 may explain the observed effects.


Assuntos
Brassica , Neoplasias Hepáticas , Humanos , Brassica/metabolismo , Morte Celular , Lipídeos , Obesidade , Células Hep G2
20.
Mol Neurobiol ; 59(2): 916-931, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797521

RESUMO

Microglia are the immune competent cell of the central nervous system (CNS), promoting brain homeostasis and regulating inflammatory response against infection and injury. Chronic or exacerbated neuroinflammation is a cause of damage in several brain pathologies. Endogenous carbon monoxide (CO), produced from the degradation of heme, is described as anti-apoptotic and anti-inflammatory in several contexts, including in the CNS. Neuroglobin (Ngb) is a haemoglobin-homologous protein, which upregulation triggers antioxidant defence and prevents neuronal apoptosis. Thus, we hypothesised a crosstalk between CO and Ngb, in particular, that the anti-neuroinflammatory role of CO in microglia depends on Ngb. A novel CO-releasing molecule (ALF826) based on molybdenum was used for delivering CO in microglial culture.BV-2 mouse microglial cell line was challenged with lipopolysaccharide (LPS) for triggering inflammation, and after 6 h ALF826 was added. CO exposure limited inflammation by decreasing inducible nitric oxide synthase (iNOS) expression and the production of nitric oxide (NO) and tumour necrosis factor-α (TNF-α), and by increasing interleukine-10 (IL-10) release. CO-induced Ngb upregulation correlated in time with CO's anti-inflammatory effect. Moreover, knocking down Ngb reversed the anti-inflammatory effect of CO, suggesting that dependents on Ngb expression. CO-induced Ngb upregulation was independent on ROS signalling, but partially dependent on the transcriptional factor SP1. Finally, microglial cell metabolism is also involved in the inflammatory response. In fact, LPS treatment decreased oxygen consumption in microglia, indicating a switch to glycolysis, which is associated with a proinflammatory. While CO treatment increased oxygen consumption, reverting LPS effect and indicating a metabolic shift into a more oxidative metabolism. Moreover, in the absence of Ngb, this phenotype was no longer observed, indicating Ngb is needed for CO's modulation of microglial metabolism. Finally, the metabolic shift induced by CO did not depend on alteration of mitochondrial population. In conclusion, neuroglobin emerges for the first time as a key player for CO signalling against exacerbated inflammation in microglia.


Assuntos
Monóxido de Carbono , Microglia , Animais , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Neuroglobina/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA