Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(6): 2086-2090, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659158

RESUMO

The amino acid, polyamine, and organocation (APC) superfamily is the second largest superfamily of membrane proteins forming secondary transporters that move a range of organic molecules across the cell membrane. Each transporter in the APC superfamily is specific for a unique subset of substrates, even if they possess a similar structural fold. The mechanism of substrate selectivity remains, by and large, elusive. Here, we report two crystal structures of an APC member from Methanococcus maripaludis, the alanine or glycine:cation symporter (AgcS), with l- or d-alanine bound. Structural analysis combined with site-directed mutagenesis and functional studies inform on substrate binding, specificity, and modulation of the AgcS family and reveal key structural features that allow this transporter to accommodate glycine and alanine while excluding all other amino acids. Mutation of key residues in the substrate binding site expand the selectivity to include valine and leucine. These studies provide initial insights into substrate selectivity in AgcS symporters.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Modelos Moleculares , Conformação Proteica , Simportadores/química , Simportadores/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos , Sítios de Ligação , Mutação , Ligação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Especificidade por Substrato , Simportadores/genética
2.
Proc Natl Acad Sci U S A ; 109(9): 3558-63, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331908

RESUMO

Voltage-gated sodium channels underlie the rapid regenerative upstroke of action potentials and are modulated by cytoplasmic calcium ions through a poorly understood mechanism. We describe the 1.35 Å crystal structure of Ca(2+)-bound calmodulin (Ca(2+)/CaM) in complex with the inactivation gate (DIII-IV linker) of the cardiac sodium channel (Na(V)1.5). The complex harbors the positions of five disease mutations involved with long Q-T type 3 and Brugada syndromes. In conjunction with isothermal titration calorimetry, we identify unique inactivation-gate mutations that enhance or diminish Ca(2+)/CaM binding, which, in turn, sensitize or abolish Ca(2+) regulation of full-length channels in electrophysiological experiments. Additional biochemical experiments support a model whereby a single Ca(2+)/CaM bridges the C-terminal IQ motif to the DIII-IV linker via individual N and C lobes, respectively. The data suggest that Ca(2+)/CaM destabilizes binding of the inactivation gate to its receptor, thus biasing inactivation toward more depolarized potentials.


Assuntos
Cálcio/fisiologia , Calmodulina/química , Ativação do Canal Iônico/fisiologia , Canais de Sódio/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Síndrome de Brugada/genética , Cálcio/química , Calmodulina/fisiologia , Cristalografia por Raios X , Humanos , Síndrome do QT Longo/genética , Substâncias Macromoleculares , Potenciais da Membrana , Modelos Moleculares , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Canais de Sódio/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-20820785

RESUMO

Tetrodotoxin (TTX) is a potent toxin that specifically binds to voltage-gated sodium channels (NaV). TTX binding physically blocks the flow of sodium ions through NaV, thereby preventing action potential generation and propagation. TTX has different binding affinities for different NaV isoforms. These differences are imparted by amino acid substitutions in positions within, or proximal to, the TTX-binding site in the channel pore. These substitutions confer TTX-resistance to a variety of species. The garter snake Thamnophis sirtalis has evolved TTX-resistance over the course of an arms race, allowing some populations of snakes to feed on tetrodotoxic newts, including Taricha granulosa. Different populations of the garter snake have different degrees of TTX-resistance, which is closely related to the number of amino acid substitutions. We tested the biophysical properties and ion selectivity of NaV of three garter snake populations from Bear Lake, Idaho; Warrenton, Oregon; and Willow Creek, California. We observed changes in gating properties of TTX-resistant (TTXr) NaV. In addition, ion selectivity of TTXr NaV was significantly different from that of TTX-sensitive NaV. These results suggest TTX-resistance comes at a cost to performance caused by changes in the biophysical properties and ion selectivity of TTXr NaV.


Assuntos
Fenômenos Biofísicos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Proteínas Musculares/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia , Animais , Fenômenos Biofísicos/genética , Biofísica/métodos , Colubridae/metabolismo , Estimulação Elétrica/métodos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Potenciais da Membrana/genética , Microinjeções/métodos , Proteínas Musculares/genética , Canal de Sódio Disparado por Voltagem NAV1.4 , Oocistos , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/genética , Tetrodotoxina/química , Xenopus
4.
J Biol Chem ; 284(48): 33265-74, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19808664

RESUMO

Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr(1494) and Tyr(1495)) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas Musculares/metabolismo , Canais de Sódio/metabolismo , Tirosina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Cloreto de Cálcio/farmacologia , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Potenciais da Membrana , Modelos Moleculares , Proteínas Musculares/química , Proteínas Musculares/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Canais de Sódio/química , Canais de Sódio/genética , Termodinâmica , Transfecção , Tirosina/química , Tirosina/genética
5.
Sci Rep ; 8(1): 2919, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440771

RESUMO

The transcriptome and proteome encode distinct information that is important for characterizing heterogeneous biological systems. We demonstrate a method to simultaneously characterize the transcriptomes and proteomes of single cells at high throughput using aptamer probes and droplet-based single cell sequencing. With our method, we differentiate distinct cell types based on aptamer surface binding and gene expression patterns. Aptamers provide advantages over antibodies for single cell protein characterization, including rapid, in vitro, and high-purity generation via SELEX, and the ability to amplify and detect them with PCR and sequencing.


Assuntos
Perfilação da Expressão Gênica , Técnica de Seleção de Aptâmeros , Análise de Célula Única , Células 3T3 , Animais , Camundongos
6.
Nat Commun ; 8(1): 332, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835641

RESUMO

Synthetic biology and metabolic engineering seek to re-engineer microbes into "living foundries" for the production of high value chemicals. Through a "design-build-test" cycle paradigm, massive libraries of genetically engineered microbes can be constructed and tested for metabolite overproduction and secretion. However, library generation capacity outpaces the rate of high-throughput testing and screening. Well plate assays are flexible but with limited throughput, whereas droplet microfluidic techniques are ultrahigh-throughput but require a custom assay for each target. Here we present RNA-aptamers-in-droplets (RAPID), a method that greatly expands the generality of ultrahigh-throughput microfluidic screening. Using aptamers, we transduce extracellular product titer into fluorescence, allowing ultrahigh-throughput screening of millions of variants. We demonstrate the RAPID approach by enhancing production of tyrosine and secretion of a recombinant protein in Saccharomyces cerevisiae by up to 28- and 3-fold, respectively. Aptamers-in-droplets affords a general approach for evolving microbes to synthesize and secrete value-added chemicals.Screening libraries of genetically engineered microbes for secreted products is limited by the available assay throughput. Here the authors combine aptamer-based fluorescent detection with droplet microfluidics to achieve high throughput screening of yeast strains engineered for enhanced tyrosine or streptavidin production.


Assuntos
Aptâmeros de Nucleotídeos/genética , Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica/métodos , Técnicas Analíticas Microfluídicas/métodos , Microscopia de Fluorescência , Fenótipo , Proteínas Recombinantes/biossíntese , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estreptavidina/biossíntese , Tirosina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA