RESUMO
Stable and efficient hydrocarbon degrading microbial consortia were developed from a refinery sludge through nitrate amendment for their application in enhanced bioremediation of petroleum contaminated waste. Nitrate induced biostimulation of refinery sludge resulted in increased abundance of hydrocarbon degrading Rhodocyclaceae, Xanthomonadaceae, Syntrophaceae and Comamonadaceae members. Repeated subculturing of nitrate stimulated communities in crude oil supplemented basal medium was done under aerobic and anaerobic conditions. Aerobically enriched consortia (composed of Pseudomonadaceae, Pseudoxanthomonadaceae and unclassified Comamonadaceae) showed their ability to utilize alkanes, aromatics and crude oil as growth substrates. Anaerobically enriched consortium was predominated by Bacillaceae, Pseudomonadaceae, Xanthomonadaceae, Porphyromonadaceae and Comamonadaceae members. Anaerobic consortium was found to be relatively less efficient in terms of TPH (total petroleum hydrocarbons) degradation compared to its aerobic counterpart. These enriched microbial consortia were finally tested for their biodegradation performance and stability during bioremediation of highly contaminated refinery sludge using different strategies. A 30 days microcosm based bioremediation trial showed that bioaugmentation of aerobic cultures with refinery sludge was more effective in TPH degradation (~ 65% degradation) compared to the anaerobic consortium (only 36% TPH degradation) and a combination of bioaugmentation and nitrate amendment with sludge resulted in enhanced hydrocarbon attenuation (up to 86% TPH degradation). Subsequent community analysis at the end of bioremediation trial confirmed the stability of the added microbial populations. Thus, the strategy of bioaugmentation of specially enriched native microbial populations in combination with nitrate amendment was successfully used for the enhanced bioremediation of petroleum hydrocarbon contaminated refinery waste.
Assuntos
Bactérias/classificação , Hidrocarbonetos/química , Nitratos/metabolismo , Petróleo/metabolismo , Esgotos/microbiologia , Aerobiose , Anaerobiose , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , DNA Ribossômico/genética , Consórcios Microbianos , Filogenia , RNA Ribossômico 16S/genética , Esgotos/químicaRESUMO
Anaerobic enrichment of As5+ reducing bacteria in the presence and/or absence of organic carbon (OC) and As5+ from As contaminated soil of Brahmaputra river basin (BRB) (Jorhat, Assam) was performed. Denaturing gradient gel electrophoresis of the 16SrRNA gene sequences amplified from the enriched microbial community indicated occurrence of maximum diversity under conditions receiving no OC (MSM) followed by moderate OC (LB). However, higher OC or As showed antagonistic effect on bacterial enrichment whereas together (BB + As) they showed a synergistic effect. Phylogenetic analysis of the prominent bands revealed an overall abundance of Lachnoanaerobaculum (39%), Clostridium (39%), Bacillus, Peptostreptococcaceae, Anaerostipes (13%), and Desulfotomaculum (8.7%). Moderate OC (LB) led to maximum As mobilization i.e. 27.42 µg/L, whereas presence of added As together with high OC (BB + As) enhanced the mobilization process. Mineralogical analyses of the sediments after incubation showed prominent weathering and loss of crystallinity in MSM and LB. Appearance of a new peak corresponding to arsenolamprite (As) in LB and LB + As indicated opening up of secondary phases of the minerals harboring As due to microbial leaching under moderate OC. This is the first study reporting Lachnoanaerobaculumas a potent As5+ dissimilating bacterium isolated from As contaminated subsurface sediment of BRB.
Assuntos
Arseniatos/análise , Arsênio/análise , Bactérias Anaeróbias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Rios/microbiologia , Poluentes Químicos da Água/análise , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Sedimentos Geológicos/química , Água Subterrânea/química , Índia , Modelos Teóricos , Filogenia , RNA Ribossômico 16S/genética , Rios/químicaRESUMO
BACKGROUND: Sustainable management of voluminous and hazardous oily sludge produced by petroleum refineries remains a challenging problem worldwide. Characterization of microbial communities of petroleum contaminated sites has been considered as the essential prerequisite for implementation of suitable bioremediation strategies. Three petroleum refinery sludge samples from North Eastern India were analyzed using next-generation sequencing technology to explore the diversity and functional potential of inhabitant microorganisms and scope for their on-site bioremediation. RESULTS: All sludge samples were hydrocarbon rich, anaerobic and reduced with sulfate as major anion and several heavy metals. High throughput sequencing of V3-16S rRNA genes from sludge metagenomes revealed dominance of strictly anaerobic, fermentative, thermophilic, sulfate-reducing bacteria affiliated to Coprothermobacter, Fervidobacterium, Treponema, Syntrophus, Thermodesulfovibrio, Anaerolinea, Syntrophobacter, Anaerostipes, Anaerobaculum, etc., which have been well known for hydrocarbon degradation. Relatively higher proportions of archaea were detected by qPCR. Archaeal 16S rRNA gene sequences showed presence of methanogenic Methanobacterium, Methanosaeta, Thermoplasmatales, etc. Detection of known hydrocarbon utilizing aerobic/facultative anaerobic (Mycobacterium, Pseudomonas, Longilinea, Geobacter, etc.), nitrate reducing (Gordonia, Novosphigobium, etc.) and nitrogen fixing (Azovibrio, Rhodobacter, etc.) bacteria suggested niche specific guilds with aerobic, facultative anaerobic and strict anaerobic populations. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predicted putative genetic repertoire of sludge microbiomes and their potential for hydrocarbon degradation; lipid-, nitrogen-, sulfur- and methane- metabolism. Methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite reductase beta-subunit (dsrB) genes phylogeny confirmed methanogenic and sulfate-reducing activities within sludge environment endowed by hydrogenotrophic methanogens and sulfate-reducing Deltaproteobacteria and Firmicutes members. CONCLUSION: Refinery sludge microbiomes were comprised of hydrocarbon degrading, fermentative, sulfate-reducing, syntrophic, nitrogen fixing and methanogenic microorganisms, which were in accordance with the prevailing physicochemical nature of the samples. Analysis of functional biomarker genes ascertained the activities of methanogenic and sulfate-reducing organisms within sludge environment. Overall data provided better insights on microbial diversity and activity in oil contaminated environment, which could be exploited suitably for in situ bioremediation of refinery sludge.
Assuntos
Bactérias Anaeróbias/classificação , Hidrocarbonetos/metabolismo , Metano/biossíntese , Petróleo/metabolismo , Esgotos/microbiologia , Bactérias Redutoras de Enxofre/classificação , Archaea/classificação , Archaea/isolamento & purificação , Bactérias Anaeróbias/isolamento & purificação , Biodegradação Ambiental , Fermentação , Índia , Consórcios Microbianos , Petróleo/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Bactérias Redutoras de Enxofre/isolamento & purificaçãoRESUMO
BACKGROUND & OBJECTIVES: Hepatitis B virus (HBV) and HIV co-infection has variable prevalence worldwide. In comparison to HBV mono-infection, the course of chronic HBV infection is accelerated in HIV/HBV co-infected patients. the present study was carried out to analyse the baseline characteristics (clinical, biochemical, serological and virological) of treatment naïve HIV/HBV co-infected and HIV mono-infected patients. METHODS: Between July 2011 and January 2013, a total number of 1331 HIV-seropositive treatment naïve individuals, enrolled in the ART Centre of Calcutta School of Tropical Medicine, Kolkata, India, were screened for hepatitis B surface antigen (HBsAg). A total of 1253 HIV mono-infected and 78 HIV/HBV co-infected patients were characterized. The co-infected patients were evaluated for HBeAg and anti-HBe antibody by ELISA. HIV RNA was quantified for all co-infected patients. HBV DNA was detected and quantified by real time-PCR amplification followed by HBV genotype determination. RESULTS: HIV/HBV co-infected patients had proportionately more advanced HIV disease (WHO clinical stage 3 and 4) than HIV mono-infected individuals (37.1 vs. 19.9%). The co-infected patients had significantly higher serum bilirubin, alanine aminotransferase (ALT), alkaline phosphatase and ALT/platelet ratio index (APRI). CD4 count was non-significantly lower in co-infected patients. Majority (61.5%) were HBeAg positive with higher HIV RNA (P<0.05), HBV DNA (p<0.001) and APRI (p<0.05) compared to those who were HBeAg negative. HBV/D was the predominant genotype (73.2%) and D2 (43.7%) was the commonest subgenotype. INTERPRETATION & CONCLUSIONS: HIV/HBV co-infected patients had significantly higher serum bilirubin, ALT, alkaline phosphatase and lower platelet count. HBeAg positive co-infected patients had higher HIV RNA and HBV DNA compared to HBeAg negative co-infected patients. Prior to initiation of antiretroviral treatment (ART) all patients should be screened for HBsAg to initiate appropriate ART regimen.
Assuntos
Coinfecção/fisiopatologia , Infecções por HIV/fisiopatologia , HIV/patogenicidade , Vírus da Hepatite B/patogenicidade , Hepatite B/fisiopatologia , Adolescente , Adulto , Idoso , Feminino , Infecções por HIV/sangue , Infecções por HIV/virologia , Hepatite B/sangue , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Microbial community analysis of crude oil containing sludge collected from Duliajan oil field, Assam, India, showed the predominance of hydrocarbon-degrading bacteria such as Pseudomonas (20.1%), Pseudoxanthomonas (15.8%), Brevundimonas (1.6%), and Bacillus (0.8%) alongwith anaerobic, fermentative, nitrogen-fixing, nitrate-, sulfate-, and metal-reducing, syntrophic bacteria, and methanogenic archaea. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated gene collection for potential hydrocarbon degradation, lipid, nitrogen, sulfur, and methane metabolism. The culturable microbial community was predominated by Pseudomonas and Bacillus with the metabolic potential for utilizing diverse hydrocarbons, crude oil, and actual petroleum sludge as sole carbon source during growth and tolerating various environmental stresses prevailing in such contaminated sites. More than 90% of the isolated strains could produce biosurfactant and exhibit catechol 2,3-dioxygenase activity. Nearly 30% of the isolates showed alkane hydroxylase activity with the maximum specific activity of 0.54 µmol min-1 mg-1. The study provided better insights into the microbial diversity and functional potential within the crude oil containing sludge which could be exploited for in situ bioremediation of contaminated sites.
Assuntos
Microbiota , Petróleo , Biodegradação Ambiental , Hidrocarbonetos , Campos de Petróleo e Gás , Petróleo/análise , Filogenia , EsgotosRESUMO
Archaeal community structure and potential functions within the deep, aphotic, oligotrophic, hot, igneous provinces of â¼65 Myr old basalt and its Archean granitic basement was explored through archaeal 16S rRNA gene amplicon sequencing from extracted environmental DNA of rocks. Rock core samples from three distinct horizons, basaltic (BS), transition (weathered granites) (TZ) and granitic (GR) showed limited organic carbon (4-48 mg/kg) and varied concentrations (<1.0-5000 mg/kg) of sulfate, nitrate, nitrite, iron and metal oxides. Quantitative PCR estimated the presence of nearly 103-104 archaeal cells per gram of rock. Archaeal communities within BS and GR horizons were distinct. The absence of any common OTU across the samples indicated restricted dispersal of archaeal cells. Younger, relatively organic carbon- and Fe2O3-rich BS rocks harbor Euryarchaeota, along with varied proportions of Thaumarchaeota and Crenarchaeota. Extreme acid loving, thermotolerant sulfur respiring Thermoplasmataceae, heterotrophic, ferrous-/H-sulfide oxidizing Ferroplasmaceae and Halobacteriaceae were more abundant and closely interrelated within BS rocks. Samples from the GR horizon represent a unique composition with higher proportions of Thaumarchaeota and uneven distribution of Euryarchaeota and Bathyarchaeota affiliated to Methanomicrobia, SAGMCG-1, FHMa11 terrestrial group, AK59 and unclassified taxa. Acetoclastic methanogenic Methanomicrobia, autotrophic SAGMCG-1 and MCG of Thaumarcheaota could be identified as the signature groups within the organic carbon lean GR horizon. Sulfur-oxidizing Sulfolobaceae was relatively more abundant in sulfate-rich amygdaloidal basalt and migmatitic gneiss samples. Methane-oxidizing ANME-3 populations were found to be ubiquitous, but their abundance varied greatly between the analyzed samples. Changes in diversity pattern among the BS and GR horizons highlighted the significance of local rock geochemistry, particularly the availability of organic carbon, Fe2O3 and other nutrients as well as physical constraints (temperature and pressure) in a niche-specific colonization of extremophilic archaeal communities. The study provided the first deep sequencing-based illustration of an intricate association between diverse extremophilic groups (acidophile-halophile-methanogenic), capable of sulfur/iron/methane metabolism and thus shed new light on their potential role in biogeochemical cycles and energy flow in deep biosphere hosted by hot, oligotrophic igneous crust.
RESUMO
Sulfate- and iron-reducing heterotrophic bacteria represented minor proportion of the indigenous microbial community of highly acidic, oligotrophic acid mine drainage (AMD), but they can be successfully stimulated for in situ bioremediation of an AMD impacted soil (AIS). These anaerobic microorganisms although played central role in sulfate- and metal-removal, they remained inactive in the AIS due to the paucity of organic carbon and extreme acidity of the local environment. The present study investigated the scope for increasing the abundance and activity of inhabitant sulfate- and iron-reducing bacterial populations of an AIS from Malanjkhand Copper Project. An AIS of pH 3.5, high soluble SO4 2- (7838 mg/l) and Fe (179 mg/l) content was amended with nutrients (cysteine and lactate). Thorough geochemical analysis, 16S rRNA gene amplicon sequencing and qPCR highlighted the intrinsic metabolic abilities of native bacteria in AMD bioremediation. Following 180 days incubation, the nutrient amended AIS showed marked increase in pH (to 6.6) and reduction in soluble -SO4 2- (95%), -Fe (50%) and other heavy metals. Concomitant to physicochemical changes a vivid shift in microbial community composition was observed. Members of the Firmicutes present as a minor group (1.5% of total community) in AIS emerged as the single most abundant taxon (â¼56%) following nutrient amendments. Organisms affiliated to Clostridiaceae, Peptococcaceae, Veillonellaceae, Christensenellaceae, Lachnospiraceae, Bacillaceae, etc. known for their fermentative, iron and sulfate reducing abilities were prevailed in the amended samples. qPCR data corroborated with this change and further revealed an increase in abundance of dissimilatory sulfite reductase gene (dsrB) and specific bacterial taxa. Involvement of these enhanced populations in reductive processes was validated by further enrichments and growth in sulfate- and iron-reducing media. Amplicon sequencing of these enrichments confirmed growth of Firmicutes members and proved their sulfate- and iron-reduction abilities. This study provided a better insight on ecological perspective of Firmicutes members within the AMD impacted sites, particularly their involvement in sulfate- and iron-reduction processes, in situ pH management and bioremediation.
RESUMO
Background: Combination of tenofovir disoproxil fumarate (TDF), lamivudine (3TC) and efavirenz (EFV) is preferred in the treatment of HIV/hepatitis B virus (HBV) coinfection. We postulated that a HBV active nucleoside reverse transcriptase (RT) inhibitor/nucleotide RT inhibitor backbone of adefovir dipivoxil (ADV) +3TC would be as effective as TDF +3TC for the Indian population. Objective: ADV + 3TC could be an alternative option for these HIV/HBV coinfected individuals, preserving the dually active TDF + 3TC as second-line nucleoside backbone following failure of the first-line ART. Materials and Methods: This randomised control trial (CTRI/2012/03/002471) was carried out at the ART Centre of Calcutta School of Tropical Medicine, India. Seventy-eight (39 on each arm) treatment-naïve HIV/HBV coinfected patients were randomised to receive either the combination of lamivudine + tenofovir + EFV or lamivudine + adefovir + zidovudine + EFV and followed up for 120 weeks. Results: Median age of the study participants was 36 years (21-62), majority were male (61/78; 78.2%) and heterosexually (39/78; 50%) infected. Baseline characteristics were identical in both arms. There was no statistically significant difference in median aspartate aminotransferase (37 vs. 29.5 U/L), alanine aminotransferase (ALT) (36 vs. 34.5 U/L), ALT normalisation rate (80 vs. 70%), AST to platelet ratio index (0.45 vs. 0.33), CD4 count (508 vs. 427 cells/mm3), HBV DNA suppression (81.8 vs. 70%), hepatitis B e antigen loss (9 vs. 5%), hepatitis B surface antigen seroclearance rate (6.06 vs. 18.75%) and death (3 vs. 3) at 120 weeks between TDF (n = 33) and ADV (n = 32), respectively. Conclusions: Adefovir plus lamivudine is an effective alternative of tenofovir plus lamivudine in long-term HBV treatment outcome in HIV/HBV coinfected patients.
Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/uso terapêutico , Antivirais/uso terapêutico , Coinfecção/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Hepatite B/tratamento farmacológico , Lamivudina/uso terapêutico , Organofosfonatos/uso terapêutico , Tenofovir/uso terapêutico , Adenina/uso terapêutico , Adulto , Feminino , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Scientific deep drilling at Koyna, western India provides a unique opportunity to explore microbial life within deep biosphere hosted by ~65 Myr old Deccan basalt and Archaean granitic basement. Characteristic low organic carbon content, mafic/felsic nature but distinct trend in sulfate and nitrate concentrations demarcates the basaltic and granitic zones as distinct ecological habitats. Quantitative PCR indicates a depth independent distribution of microorganisms predominated by bacteria. Abundance of dsrB and mcrA genes are relatively higher (at least one order of magnitude) in basalt compared to granite. Bacterial communities are dominated by Alpha-, Beta-, Gammaproteobacteria, Actinobacteria and Firmicutes, whereas Euryarchaeota is the major archaeal group. Strong correlation among the abundance of autotrophic and heterotrophic taxa is noted. Bacteria known for nitrite, sulfur and hydrogen oxidation represent the autotrophs. Fermentative, nitrate/sulfate reducing and methane metabolising microorganisms represent the heterotrophs. Lack of shared operational taxonomic units and distinct clustering of major taxa indicate possible community isolation. Shotgun metagenomics corroborate that chemolithoautotrophic assimilation of carbon coupled with fermentation and anaerobic respiration drive this deep biosphere. This first report on the geomicrobiology of the subsurface of Deccan traps provides an unprecedented opportunity to understand microbial composition and function in the terrestrial, igneous rock-hosted, deep biosphere.
Assuntos
Microbiologia Ambiental , Sedimentos Geológicos/microbiologia , Microbiota , Biodiversidade , Biologia Computacional/métodos , Índia , Metagenoma , Metagenômica/métodos , RNA Ribossômico 16S/genéticaRESUMO
Scope for developing an engineered bioremediation strategy for the treatment of hydrocarbon-rich petroleum refinery waste was investigated through biostimulation and bioaugmentation approaches. Enhanced (46-55%) total petroleum hydrocarbon (TPH) attenuation was achieved through phosphate, nitrate or nitrate+phosphate amendment in the sludge with increased (upto 12%) abundance of fermentative, hydrocarbon degrading, sulfate-reducing, CO2-assimilating and methanogenic microorganisms (Bacillus, Coprothermobacter, Rhodobacter, Pseudomonas, Achromobacter, Desulfitobacter, Desulfosporosinus, T78, Methanobacterium, Methanosaeta, etc). Together with nutrients, bioaugmentation with biosurfactant producing and hydrocarbon utilizing indigenous Bacillus strains resulted in 57-75% TPH reduction. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis revealed enhanced gene allocation for transporters (0.45-3.07%), ABC transporters (0.38-2.07%), methane (0.16-1.06%), fatty acid (0.018-0.15%), nitrogen (0.07-0.17%), butanoate (0.06-0.35%), propanoate (0.004-0.26%) metabolism and some xenobiotics (0.007-0.13%) degradation. This study indicated that nutrient-induced community dynamics of native microorganisms and their metabolic interplay within oil refinery sludge could be a driving force behind accelerated bioremediation.
Assuntos
Biodegradação Ambiental , Esgotos , Poluentes do Solo , Hidrocarbonetos , Petróleo , Filogenia , Microbiologia do SoloRESUMO
Mine tailings from copper mines are considered as one of the sources of highly hazardous acid mine drainage (AMD) due to bio-oxidation of its sulfidic constituents. This study was designed to understand microbial community composition and potential for acid generation using samples from mine tailings of Malanjkhand copper project (MCP), India through 16S rRNA gene based amplicon sequencing approach (targeting V4 region). Three tailings samples (T1, T2 and T3) with varied physiochemical properties selected for the study revealed distinct microbial assemblages. Sample (T3) with most extreme nature (pH < 2.0) harbored Proteobacteria, Actinobacteria, Chloroflexi while the samples (T1 and T3) with slightly moderate nature (pH < 4.0 and > 3.0) exhibited abundance of Proteobacteria, Fimicutes, Actinobacteria and/or Nitrospirae. Metagenomic sequences are available under the BioProject ID PRJNA361456.
RESUMO
Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs) and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched [high total petroleum hydrocarbon (TPH)], oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days) with nitrate amendment. Preferred utilization of both higher- (>C30) and middle- chain (C20-30) length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis and community level physiological profiling analyses indicated distinct shift in community's composition and metabolic abilities following nitrogen (N) amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA), methanogenesis (mcrA), denitrification (nirS and narG) and N2 fixation (nifH) were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP) marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members [e.g., Azovibrio, Pseudoxanthomonas and Comamonadaceae members] was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources.
RESUMO
Previously we reported that the exposure to hepatitis B virus (HBV) infection serves as a major threat among the treatment naive HIV infected population of eastern India. Hence, molecular characterization of these strains is of utmost importance in order to identify clinically significant HBV mutations. A total of 85 treatment naive HIV/HBV co-infected participants were included of whom the complete basal core promoter/precore region, the core and the whole envelope gene could be successfully sequenced for 59, 57 and 39 isolates respectively. Following phylogenetic analysis, it was found that HBV/D was the predominant genotype with HBV/D2 (38.5%) being the most prevalent subgenotype followed by HBV/A1. The major mutations affecting HBeAg expression includes the A1762T/G1764A (13.6%), G1896A (22%) and G1862T mutation (33.9%) which was predominantly associated with HBV/A1. Moreover, the prevalence of G1896A was considerably high among the HBeAg negative HIV/HBV co-infected subjects compared to HBV mono-infection. The main amino acid substitutions within the MHC class II restricted T-cell epitope of HBcAg includes the T12S (15.8%) and T67N (12.3%) mutation and the V27I (10.5%) mutation in the MHC class I restricted T-cell epitope. PreS1/S2 deletion was detected in 3 isolates with all harboring the BCP double mutation. Furthermore, the frequently occurring mutations in the major hydrophilic loop of the S gene include the T125M, A128V and M133I/L. Therefore, this study is the first from India to report useful information on the molecular heterogeneity of the HBV strains circulating among the treatment naive HIV/HBV co-infected population and is thus clinically relevant.
Assuntos
HIV , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Filogenia , Proteínas do Core Viral/genética , Proteínas do Envelope Viral/genética , Adulto , Coinfecção , Feminino , Heterogeneidade Genética , Genótipo , Infecções por HIV/diagnóstico , Infecções por HIV/imunologia , Infecções por HIV/virologia , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/imunologia , Vírus da Hepatite B/classificação , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Regiões Promotoras GenéticasRESUMO
OBJECTIVE: The study was designed to assess the hepatitis B virus (HBV) and hepatitis C virus (HCV) co-infection scenario among the human immunodeficiency virus (HIV) infected patients attending a tertiary healthcare unit in eastern India. Additionally, clinical and virological characterization of these viruses, prior to antiretroviral therapy (ART) initiation was also done for better understanding of the disease profile. METHODS: Pool of ART-naive HIV/HBV co-infected and HIV mono-infected patients, participating in two different studies, were included in this study. HBV DNA was detected by nested-PCR amplification followed by HBV genotype determination and HBV reverse transcriptase (RT) region amplification and direct sequencing for detecting drug resistance. RESULTS: The prevalence of HBsAg (11.3%) was higher compared to anti-HCV (1.9%) among the HIV infected ART-naive patients. Moreover, majority of the HBeAg positive HIV/HBV co-infected patients (87.7%) had HBV DNA ≥20,000 IU/ml with median HBV DNA significantly higher than that of HBeAg negative subjects (5.7 log10 IU/ml vs. 4.2 log10 IU/ml; p<0.0001). Multivariate analysis also showed that HBeAg-positive status was independently associated with higher HBV DNA level (pâ=â<0.001). Notably, 60.9% of the HBeAg negative co-infected subjects had HBV DNA ≥2,000 IU/ml of which 37.0% had HBV DNA ≥20,000 IU/ml. Genotype HBV/D (68.2%) was the predominant genotype followed by HBV/A (24.3%) and HBV/C (7.5%). Anti-HBV drug resistant mutations were detected in two (3.8%) of the ART-naive patients. CONCLUSION: The prevalence of HIV/HBV co-infection was relatively higher in our study subjects. HBeAg testing might provide clue for early treatment initiation. Furthermore, HBeAg negative patients are also associated with high HBV DNA levels and therefore require appropriate medical attention. Pre-treatment screening for anti-HBV drug resistant mutations is not necessary before ART initiation.