Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705393

RESUMO

Inactivating mutations of genes encoding the cohesin complex are common in a wide range of human cancers. STAG2 is the most commonly mutated subunit. Here we report the impact of stable correction of endogenous, naturally occurring STAG2 mutations on gene expression, 3D genome organization, chromatin loops, and Polycomb signaling in glioblastoma multiforme (GBM). In two GBM cell lines, correction of their STAG2 mutations significantly altered the expression of ∼10% of all expressed genes. Virtually all the most highly regulated genes were negatively regulated by STAG2 (i.e., expressed higher in STAG2-mutant cells), and one of them-HEPH-was regulated by STAG2 in uncultured GBM tumors as well. While STAG2 correction had little effect on large-scale features of 3D genome organization (A/B compartments, TADs), STAG2 correction did alter thousands of individual chromatin loops, some of which controlled the expression of adjacent genes. Loops specific to STAG2-mutant cells, which were regulated by STAG1-containing cohesin complexes, were very large, supporting prior findings that STAG1-containing cohesin complexes have greater loop extrusion processivity than STAG2-containing cohesin complexes and suggesting that long loops may be a general feature of STAG2-mutant cancers. Finally, STAG2 mutation activated Polycomb activity leading to increased H3K27me3 marks, identifying Polycomb signaling as a potential target for therapeutic intervention in STAG2-mutant GBM tumors. Together, these findings illuminate the landscape of STAG2-regulated genes, A/B compartments, chromatin loops, and pathways in GBM, providing important clues into the largely still unknown mechanism of STAG2 tumor suppression.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Mutação , Proteínas do Grupo Polycomb , Transdução de Sinais , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Linhagem Celular Tumoral , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Genoma Humano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Coesinas
2.
J Pharmacol Exp Ther ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858089

RESUMO

Radiation therapy, a standard treatment option for many cancer patients, induces DNA double strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier (BBB). The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the CNS distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., Kpuu) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-gp and Bcrp. WSD0628 is distributed uniformly amongst different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the PK-PD-efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. Significance Statement This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose-proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.

3.
Bioinformatics ; 38(7): 2015-2021, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35040929

RESUMO

MOTIVATION: Mass spectrometry imaging (MSI) provides rich biochemical information in a label-free manner and therefore holds promise to substantially impact current practice in disease diagnosis. However, the complex nature of MSI data poses computational challenges in its analysis. The complexity of the data arises from its large size, high-dimensionality and spectral nonlinearity. Preprocessing, including peak picking, has been used to reduce raw data complexity; however, peak picking is sensitive to parameter selection that, perhaps prematurely, shapes the downstream analysis for tissue classification and ensuing biological interpretation. RESULTS: We propose a deep learning model, massNet, that provides the desired qualities of scalability, nonlinearity and speed in MSI data analysis. This deep learning model was used, without prior preprocessing and peak picking, to classify MSI data from a mouse brain harboring a patient-derived tumor. The massNet architecture established automatically learning of predictive features, and automated methods were incorporated to identify peaks with potential for tumor delineation. The model's performance was assessed using cross-validation, and the results demonstrate higher accuracy and a substantial gain in speed compared to the established classical machine learning method, support vector machine. AVAILABILITY AND IMPLEMENTATION: https://github.com/wabdelmoula/massNet. The data underlying this article are available in the NIH Common Fund's National Metabolomics Data Repository (NMDR) Metabolomics Workbench under project id (PR001292) with http://dx.doi.org/10.21228/M8Q70T. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Neoplasias , Animais , Camundongos , Espectrometria de Massas/métodos , Metabolômica/métodos , Aprendizado de Máquina , Neoplasias/diagnóstico por imagem
4.
Blood ; 137(4): 513-523, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507295

RESUMO

Chromosome region maintenance protein 1 (CRM1) mediates protein export from the nucleus and is a new target for anticancer therapeutics. Broader application of KPT-330 (selinexor), a first-in-class CRM1 inhibitor recently approved for relapsed multiple myeloma and diffuse large B-cell lymphoma, have been limited by substantial toxicity. We discovered that salicylates markedly enhance the antitumor activity of CRM1 inhibitors by extending the mechanisms of action beyond CRM1 inhibition. Using salicylates in combination enables targeting of a range of blood cancers with a much lower dose of selinexor, thereby potentially mitigating prohibitive clinical adverse effects. Choline salicylate (CS) with low-dose KPT-330 (K+CS) had potent, broad activity across high-risk hematological malignancies and solid-organ cancers ex vivo and in vivo. The K+CS combination was not toxic to nonmalignant cells as compared with malignant cells and was safe without inducing toxicity to normal organs in mice. Mechanistically, compared with KPT-330 alone, K+CS suppresses the expression of CRM1, Rad51, and thymidylate synthase proteins, leading to more efficient inhibition of CRM1-mediated nuclear export, impairment of DNA-damage repair, reduced pyrimidine synthesis, cell-cycle arrest in S-phase, and cell apoptosis. Moreover, the addition of poly (ADP-ribose) polymerase inhibitors further potentiates the K+CS antitumor effect. K+CS represents a new class of therapy for multiple types of blood cancers and will stimulate future investigations to exploit DNA-damage repair and nucleocytoplasmic transport for cancer therapy in general.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Colina/análogos & derivados , Reparo do DNA/efeitos dos fármacos , Hidrazinas/farmacologia , Carioferinas/antagonistas & inibidores , Linfoma não Hodgkin/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Salicilatos/farmacologia , Triazóis/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Colina/administração & dosagem , Colina/efeitos adversos , Colina/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/efeitos adversos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/patologia , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Distribuição Aleatória , Salicilatos/administração & dosagem , Salicilatos/efeitos adversos , Triazóis/administração & dosagem , Triazóis/efeitos adversos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
5.
Pharm Res ; 40(11): 2731-2746, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37589827

RESUMO

The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.


Assuntos
Neoplasias Encefálicas , Encéfalo , Humanos , Barreira Hematoencefálica , Proteínas de Membrana Transportadoras , Neoplasias Encefálicas/tratamento farmacológico , Transporte Biológico , Preparações Farmacêuticas
6.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138986

RESUMO

Glioblastoma (GBM), a highly lethal and aggressive central nervous system malignancy, presents a critical need for targeted therapeutic approaches to improve patient outcomes in conjunction with standard-of-care (SOC) treatment. Molecular subtyping based on genetic profiles and metabolic characteristics has advanced our understanding of GBM to better predict its evolution, mechanisms, and treatment regimens. Pharmacological ascorbate (P-AscH-) has emerged as a promising supplementary cancer therapy, leveraging its pro-oxidant properties to selectively kill malignant cells when combined with SOC. Given the clinical challenges posed by the heterogeneity and resistance of various GBM subtypes to conventional SOC, our study assessed the response of classical, mesenchymal, and proneural GBM to P-AscH-. P-AscH- (20 pmol/cell) combined with SOC (5 µM temozolomide and 4 Gy of radiation) enhanced clonogenic cell killing in classical and mesenchymal GBM subtypes, with limited effects in the proneural subtype. Similarly, following exposure to P-AscH- (20 pmol/cell), single-strand DNA damage significantly increased in classical and mesenchymal but not proneural GBM. Moreover, proneural GBM exhibited increased hydrogen peroxide removal rates, along with increased catalase and glutathione peroxidase activities compared to mesenchymal and classical GBM, demonstrating an altered H2O2 metabolism that potentially drives differential P-AscH- toxicity. Taken together, these data suggest that P-AscH- may hold promise as an approach to improve SOC responsiveness in mesenchymal GBMs that are known for their resistance to SOC.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Peróxido de Hidrogênio/metabolismo , Ácido Ascórbico/farmacologia , Antioxidantes , Quimiorradioterapia
7.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239852

RESUMO

Extracellular vesicles (EVs) play important roles in (patho)physiological processes by mediating cell communication. Although EVs contain glycans and glycosaminoglycans (GAGs), these biomolecules have been overlooked due to technical challenges in comprehensive glycome analysis coupled with EV isolation. Conventional mass spectrometry (MS)-based methods are restricted to the assessment of N-linked glycans. Therefore, methods to comprehensively analyze all glyco-polymer classes on EVs are urgently needed. In this study, tangential flow filtration-based EV isolation was coupled with glycan node analysis (GNA) as an innovative and robust approach to characterize most major glyco-polymer features of EVs. GNA is a molecularly bottom-up gas chromatography-MS technique that provides unique information that is unobtainable with conventional methods. The results indicate that GNA can identify EV-associated glyco-polymers that would remain undetected with conventional MS methods. Specifically, predictions based on GNA identified a GAG (hyaluronan) with varying abundance on EVs from two different melanoma cell lines. Enzyme-linked immunosorbent assays and enzymatic stripping protocols confirmed the differential abundance of EV-associated hyaluronan. These results lay the framework to explore GNA as a tool to assess major glycan classes on EVs, unveiling the EV glycocode and its biological functions.


Assuntos
Vesículas Extracelulares , Melanoma , Humanos , Glicosaminoglicanos/metabolismo , Ácido Hialurônico/metabolismo , Melanoma/diagnóstico , Melanoma/metabolismo , Polissacarídeos/metabolismo , Vesículas Extracelulares/metabolismo
8.
J Intern Med ; 292(1): 3-30, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35040235

RESUMO

Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos/métodos , Humanos
9.
J Pharmacol Exp Ther ; 381(3): 217-228, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35370138

RESUMO

Cytotoxic effects of chemotherapy and radiation therapy (RT) used for the treatment of brain metastases results from DNA damage within cancer cells. Cells rely on highly evolved DNA damage response (DDR) pathways to repair the damage caused by these treatments. Inhibiting these repair pathways can further sensitize cancer cells to chemotherapy and RT. The catalytic subunit of DNA-dependent protein kinase, in a complex with Ku80 and Ku70, is a pivotal regulator of the DDR, and peposertib is a potent inhibitor of this catalytic subunit. The characterization of central nervous system (CNS) distributional kinetics of peposertib is critical in establishing a therapeutic index in the setting of brain metastases. Our studies demonstrate that the delivery of peposertib is severely restricted into the CNS as opposed to peripheral organs, by active efflux at the blood-brain barrier (BBB). Peposertib has a low free fraction in the brain and spinal cord, further reducing the active concentration, and distributes to the same degree within different anatomic regions of the brain. However, peposertib is heterogeneously distributed within the metastatic tumor, where its concentration is highest within the tumor core (with disrupted BBB) and substantially lower within the invasive tumor rim (with a relatively intact BBB) and surrounding normal brain. These findings are critical in guiding the potential clinical deployment of peposertib as a radiosensitizing agent for the safe and effective treatment of brain metastases. SIGNIFICANCE STATEMENT: Effective radiosensitization of brain metastases while avoiding toxicity to the surrounding brain is critical in the development of novel radiosensitizers. The central nervous system distribution of peposertib, a potent catalytic subunit of DNA-dependent protein kinase inhibitor, is restricted by active efflux in the normal blood-brain barrier (BBB) but can reach significant concentrations in the tumor core. This finding suggests that peposertib may be an effective radiosensitizer for intracranial tumors with an open BBB, while limited distribution into normal brain will decrease the risk of enhanced radiation injury.


Assuntos
Neoplasias Encefálicas , Radiossensibilizantes , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Domínio Catalítico , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Piridazinas , Quinazolinas , Radiossensibilizantes/farmacologia
10.
J Pharmacol Exp Ther ; 383(1): 91-102, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36137710

RESUMO

Effective drug delivery to the brain is critical for the treatment of glioblastoma (GBM), an aggressive and invasive primary brain tumor that has a dismal prognosis. Radiation therapy, the mainstay of brain tumor treatment, works by inducing DNA damage. Therefore, inhibiting DNA damage response (DDR) pathways can sensitize tumor cells to radiation and enhance cytotoxicity. AZD1390 is an inhibitor of ataxia-telangiectasia mutated kinase, a critical regulator of DDR. Our in vivo studies in the mouse indicate that delivery of AZD1390 to the central nervous system (CNS) is restricted due to active efflux by P-glycoprotein (P-gp). The free fraction of AZD1390 in brain and spinal cord were found to be low, thereby reducing the partitioning of free drug to these organs. Coadministration of an efflux inhibitor significantly increased CNS exposure of AZD1390. No differences were observed in distribution of AZD1390 within different anatomic regions of CNS, and the functional activity of P-gp and breast cancer resistance protein also remained the same across brain regions. In an intracranial GBM patient-derived xenograft model, AZD1390 accumulation was higher in the tumor core and rim compared with surrounding brain. Despite this heterogenous delivery within tumor-bearing brain, AZD1390 concentrations in normal brain, tumor rim, and tumor core were above in vitro effective radiosensitizing concentrations. These results indicate that despite being a substrate of efflux in the mouse brain, sufficient AZD1390 exposure is anticipated even in regions of normal brain. SIGNIFICANCE STATEMENT: Given the invasive nature of glioblastoma (GBM), tumor cells are often protected by an intact blood-brain barrier, requiring the development of brain-penetrant molecules for effective treatment. We show that efflux mediated by P-glycoprotein (P-gp) limits central nervous system (CNS) distribution of AZD1390 and that there are no distributional differences within anatomical regions of CNS. Despite efflux by P-gp, concentrations effective for potent radiosensitization are achieved in GBM tumor-bearing mouse brains, indicating that AZD1390 is an attractive molecule for clinical development of brain tumors.


Assuntos
Antineoplásicos , Ataxia Telangiectasia , Neoplasias Encefálicas , Glioblastoma , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
11.
Drug Metab Dispos ; 50(3): 277-286, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34887255

RESUMO

Bioluminescent imaging (BLI) is a powerful tool in biomedical research to measure gene expression and tumor growth. The current study examined factors that influence the BLI signal, specifically focusing on the tissue distribution of two luciferase substrates, D-luciferin and CycLuc1. D-luciferin, a natural substrate of firefly luciferase, has been reported to have limited brain distribution, possibly due to the efflux transporter, breast cancer resistance protein (Bcrp), at the blood-brain barrier. CycLuc1, a synthetic analog of D-luciferin, has a greater BLI signal at lower doses than D-luciferin, especially in the brain. Our results indicate that limited brain distribution of D-luciferin and CycLuc1 is predominantly dictated by their low intrinsic permeability across the cell membrane, where the efflux transporter, Bcrp, plays a relatively minor role. Both genetic ablation and pharmacological inhibition of Bcrp decreased the systemic clearance of both luciferase substrates, significantly increasing exposure in the blood and, hence, in organs and tissues. These data also indicate that the biodistribution of luciferase substrates can be differentially influenced in luciferase-bearing tissues, leading to a "tissue-dependent" BLI signal. The results of this study point to the need to consider multiple mechanisms that influence the distribution of luciferase substrates. SIGNIFICANCE STATEMENT: Bioluminescence is used to monitor many biological processes, including tumor growth. This study examined the pharmacokinetics, brain distribution, and the role of active efflux transporters on the luciferase substrates D-luciferin and CycLuc1. CycLuc1 has a more sustained systemic circulation time (longer half-life) that can provide an advantage for the superior imaging outcome of CycLuc1 over D-luciferin. The disparity in imaging intensities between brain and peripheral sites is due to low intrinsic permeability of these luciferase substrates across the blood-brain barrier.


Assuntos
Neoplasias Encefálicas , Medições Luminescentes , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Luciferases/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/métodos , Proteínas de Neoplasias/metabolismo , Distribuição Tecidual
12.
Mol Med ; 27(1): 28, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33765907

RESUMO

BACKGROUND: Glioblastoma is the most common primary brain tumor and remains uniformly fatal, highlighting the dire need for developing effective therapeutics. Significant intra- and inter-tumor heterogeneity and inadequate delivery of therapeutics across blood-brain barrier continue to be significant impediments towards developing therapies which can significantly enhance survival. We hypothesize that microRNAs have the potential to serve as effective therapeutics for glioblastoma as they modulate the activity of multiple signaling pathways, and hence can counteract heterogeneity if successfully delivered. METHODS: Using a computational approach, we identified microRNA-34a as a microRNA that maximally reduces the activation status of the three core signaling networks (the receptor tyrosine kinase, p53 and Rb networks) that have been found to be deregulated in most glioblastoma tumors. Glioblastoma cultures were transfected with microRNA-34a or control microRNA to assess biological function and therapeutic potential in vitro. Nanocells were derived from genetically modified bacteria and loaded with microRNA-34a for intravenous administration to orthotopic patient-derived glioblastoma xenografts in mice. RESULTS: Overexpression of microRNA-34a strongly reduced the activation status of the three core signaling networks. microRNA-34a transfection also inhibited the survival of multiple established glioblastoma cell lines, as well as primary patient-derived xenograft cultures representing the proneural, mesenchymal and classical subtypes. Transfection of microRNA-34a enhanced temozolomide (TMZ) response in in vitro cultures of glioblastoma cells with primary TMZ sensitivity, primary TMZ resistance and acquired TMZ resistance. Mechanistically, microRNA-34a downregulated multiple therapeutic resistance genes which are associated with worse survival in glioblastoma patients and are enriched in specific tumor spatial compartments. Importantly, intravenous administration of nanocells carrying miR-34a and targeted to epidermal growth factor receptor (EGFR) strongly enhanced TMZ sensitivity in an orthotopic patient-derived xenograft mouse model of glioblastoma. CONCLUSIONS: Targeted bacterially-derived nanocells are an effective vehicle for the delivery of microRNA-34a to glioblastoma tumors. microRNA-34a inhibits survival and strongly sensitizes a wide range of glioblastoma cell cultures to TMZ, suggesting that combination therapy of TMZ with microRNA-34a loaded nanocells may serve as a novel therapeutic approach for the treatment of glioblastoma tumors.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , MicroRNAs/administração & dosagem , Nanoestruturas/administração & dosagem , Temozolomida/uso terapêutico , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Camundongos Nus
13.
J Pharmacol Exp Ther ; 379(3): 343-357, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34556535

RESUMO

The effective treatment of brain tumors is a considerable challenge in part because of the presence of the blood-brain barrier (BBB) that limits drug delivery. Glioblastoma multiforme (GBM) is an aggressive and infiltrative primary brain tumor with an extremely poor prognosis after standard-of-care therapy with surgery, radiotherapy (RT), and chemotherapy. DNA damage response (DDR) pathways play a critical role in DNA repair in cancer cells, and inhibition of these pathways can potentially augment RT and chemotherapy tumor cell toxicity. The ataxia telangiectasia and Rad3-related protein (ATR) kinase is a key regulator of the DDR network and is potently and selectively inhibited by the ATR inhibitor berzosertib. Although in vitro studies demonstrate a synergistic effect of berzosertib in combination with temozolomide, in vivo efficacy studies have yet to recapitulate this observation using intracranial tumor models. In the current study, we demonstrate that delivery of berzosertib to the brain is restricted by efflux at the BBB. Berzosertib has a high binding affinity to brain tissue compared with plasma, thereby leading to low free drug concentrations in the brain. Berzosertib distribution is heterogenous within the tumor, wherein concentrations are substantially lower in normal brain and invasive tumor rim (wherein the BBB is intact) when compared with those in the tumor core (wherein the BBB is leaky). These results demonstrate that high tissue binding and limited and heterogenous brain distribution of berzosertib may be important factors that influence the efficacy of berzosertib therapy in GBM. SIGNIFICANCE STATEMENT: This study examined the brain delivery and efficacy of berzosertib in patient-derived xenograft models of glioblastoma multiforme (GBM). Berzosertib is actively effluxed at the blood-brain barrier and is highly bound to brain tissue, leading to low free drug concentrations in the brain. Berzosertib is heterogeneously distributed into different regions of the brain and tumor and, in this study, was not efficacious in vivo when combined with temozolomide. These factors inform the future clinical utility of berzosertib for GBM.


Assuntos
Encéfalo/metabolismo , Glioblastoma/metabolismo , Isoxazóis/administração & dosagem , Isoxazóis/metabolismo , Pirazinas/administração & dosagem , Pirazinas/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Glioblastoma/tratamento farmacológico , Células HEK293 , Humanos , Bombas de Infusão , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Neurosurg Focus ; 50(2): E10, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524942

RESUMO

Oncolytic viruses (OVs) are a class of immunotherapeutic agents with promising preclinical results for the treatment of glioblastoma (GBM) but have shown limited success in recent clinical trials. Advanced bioengineering principles from disciplines such as synthetic and systems biology are needed to overcome the current challenges faced in developing effective OV-based immunotherapies for GBMs, including off-target effects and poor clinical responses. Synthetic biology is an emerging field that focuses on the development of synthetic DNA constructs that encode networks of genes and proteins (synthetic genetic circuits) to perform novel functions, whereas systems biology is an analytical framework that enables the study of complex interactions between host pathways and these synthetic genetic circuits. In this review, the authors summarize synthetic and systems biology concepts for developing programmable, logic-based OVs to treat GBMs. Programmable OVs can increase selectivity for tumor cells and enhance the local immunological response using synthetic genetic circuits. The authors discuss key principles for developing programmable OV-based immunotherapies, including how to 1) select an appropriate chassis, a vector that carries a synthetic genetic circuit, and 2) design a synthetic genetic circuit that can be programmed to sense key signals in the GBM microenvironment and trigger release of a therapeutic payload. To illustrate these principles, some original laboratory data are included, highlighting the need for systems biology studies, as well as some preliminary network analyses in preparation for synthetic biology applications. Examples from the literature of state-of-the-art synthetic genetic circuits that can be packaged into leading candidate OV chassis are also surveyed and discussed.


Assuntos
Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Imunoterapia , Vírus Oncolíticos/genética , Biologia de Sistemas , Microambiente Tumoral
15.
Genes Dev ; 27(9): 985-90, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23603901

RESUMO

Recent studies have identified a Lys 27-to-methionine (K27M) mutation at one allele of H3F3A, one of the two genes encoding histone H3 variant H3.3, in 60% of high-grade pediatric glioma cases. The median survival of this group of patients after diagnosis is ∼1 yr. Here we show that the levels of H3K27 di- and trimethylation (H3K27me2 and H3K27me3) are reduced globally in H3.3K27M patient samples due to the expression of the H3.3K27M mutant allele. Remarkably, we also observed that H3K27me3 and Ezh2 (the catalytic subunit of H3K27 methyltransferase) at chromatin are dramatically increased locally at hundreds of gene loci in H3.3K27M patient cells. Moreover, the gain of H3K27me3 and Ezh2 at gene promoters alters the expression of genes that are associated with various cancer pathways. These results indicate that H3.3K27M mutation reprograms epigenetic landscape and gene expression, which may drive tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Histonas/genética , Histonas/metabolismo , Mutação , Linhagem Celular Tumoral , Genoma Humano/genética , Glioma/fisiopatologia , Humanos , Metilação , Células Tumorais Cultivadas
16.
J Neuroinflammation ; 17(1): 346, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208156

RESUMO

BACKGROUND: Glioblastoma is the most common and deadly form of primary brain cancer, accounting for more than 13,000 new diagnoses annually in the USA alone. Microglia are the innate immune cells within the central nervous system, acting as a front-line defense against injuries and inflammation via a process that involves transformation from a quiescent to an activated phenotype. Crosstalk between GBM cells and microglia represents an important axis to consider in the development of tissue engineering platforms to examine pathophysiological processes underlying GBM progression and therapy. METHODS: This work used a brain-mimetic hydrogel system to study patient-derived glioblastoma specimens and their interactions with microglia. Here, glioblastoma cells were either cultured alone in 3D hydrogels or in co-culture with microglia in a manner that allowed secretome-based signaling but prevented direct GBM-microglia contact. Patterns of GBM cell invasion were quantified using a three-dimensional spheroid assay. Secretome and transcriptome (via RNAseq) were used to profile the consequences of GBM-microglia interactions. RESULTS: Microglia displayed an activated phenotype as a result of GBM crosstalk. Three-dimensional migration patterns of patient-derived glioblastoma cells showed invasion was significantly decreased in response to microglia paracrine signaling. Potential molecular mechanisms underlying with this phenotype were identified from bioinformatic analysis of secretome and RNAseq data. CONCLUSION: The data demonstrate a tissue engineered hydrogel platform can be used to investigate crosstalk between immune cells of the tumor microenvironment related to GBM progression. Such multi-dimensional models may provide valuable insight to inform therapeutic innovations to improve GBM treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Gelatina/administração & dosagem , Glioblastoma/metabolismo , Hidrogéis/administração & dosagem , Microglia/metabolismo , Microambiente Tumoral/fisiologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular , Técnicas de Cocultura , Feminino , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Microglia/efeitos dos fármacos , Invasividade Neoplásica/patologia , Engenharia Tecidual/métodos , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
BMC Cancer ; 20(1): 1213, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302912

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS: GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS: Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS: These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.


Assuntos
Neoplasias Encefálicas/patologia , Receptores ErbB/genética , Genes erbB-1 , Glioblastoma/patologia , Glioma/patologia , Proteínas de Neoplasias/fisiologia , Semaforina-3A/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/metabolismo , Xenoenxertos , Humanos , Lentivirus/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neuropilina-1/biossíntese , Neuropilina-1/genética , Neuropilina-1/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Organismos Livres de Patógenos Específicos
18.
FASEB J ; 33(12): 13476-13491, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570001

RESUMO

Glioblastoma (GBM; grade 4 glioma) is a highly aggressive and incurable tumor. GBM has recently been characterized as highly dependent on alternative splicing, a critical driver of tumor heterogeneity and plasticity. Estrogen-related receptor ß (ERR-ß) is an orphan nuclear receptor expressed in the brain, where alternative splicing of the 3' end of the pre-mRNA leads to the production of 3 validated ERR-ß protein products: ERR-ß short form (ERR-ßsf), ERR-ß2, and ERR-ß exon 10 deleted. Our prior studies have shown the ERR-ß2 isoform to play a role in G2/M cell cycle arrest and induction of apoptosis, in contrast to the function of the shorter ERR-ßsf isoform in senescence and G1 cell cycle arrest. In this study, we sought to better define the role of the proapoptotic ERR-ß2 isoform in GBM. We show that the ERR-ß2 isoform is located not only in the nucleus but also in the cytoplasm. ERR-ß2 suppresses GBM cell migration and interacts with the actin nucleation-promoting factor cortactin, and an ERR-ß agonist is able to remodel the actin cytoskeleton and similarly suppress GBM cell migration. We further show that inhibition of the splicing regulatory cdc2-like kinases in combination with an ERR-ß agonist shifts isoform expression in favor of ERR-ß2 and potentiates inhibition of growth and migration in GBM cells and intracranial tumors.-Tiek, D. M., Khatib, S. A., Trepicchio, C. J., Heckler, M. M., Divekar, S. D., Sarkaria, J. N., Glasgow, E., Riggins, R. B. Estrogen-related receptor ß activation and isoform shifting by cdc2-like kinase inhibition restricts migration and intracranial tumor growth in glioblastoma.


Assuntos
Neoplasias Encefálicas/prevenção & controle , Movimento Celular , Glioblastoma/prevenção & controle , Hidrazinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Tiazóis/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Ciclo Celular , Proliferação de Células , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Isoformas de Proteínas , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
19.
J Nanobiotechnology ; 18(1): 162, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160390

RESUMO

BACKGROUND: Cancer cell-derived extracellular vesicles (EVs) have previously been shown to contribute to pre-metastatic niche formation. Specifically, aggressive tumors secrete pro-metastatic EVs that travel in the circulation to distant organs to modulate the microenvironment for future metastatic spread. Previous studies have focused on the interface between pro-metastatic EVs and epithelial/endothelial cells in the pre-metastatic niche. However, EV interactions with circulating components such as low-density lipoprotein (LDL) have been overlooked. RESULTS: This study demonstrates that EVs derived from brain metastases cells (Br-EVs) and corresponding regular cancer cells (Reg-EVs) display different interactions with LDL. Specifically, Br-EVs trigger LDL aggregation, and the presence of LDL accelerates Br-EV uptake by monocytes, which are key components in the brain metastatic niche. CONCLUSIONS: Collectively, these data are the first to demonstrate that pro-metastatic EVs display distinct interactions with LDL, which impacts monocyte internalization of EVs.


Assuntos
Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Lipoproteínas LDL/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias da Mama , Linhagem Celular Tumoral , Células Endoteliais , Humanos , Macrófagos , Monócitos , Células THP-1 , Microambiente Tumoral
20.
Proc Natl Acad Sci U S A ; 114(15): 3933-3938, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348210

RESUMO

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development akin to FAK kinase-dead mice. We identified myosin-1E (MYO1E), an actin-dependent molecular motor, to interact directly with the FAK FERM-kinase linker and induce FAK kinase activity and Y397 phosphorylation. Active FAK in turn accumulated in the nucleus where it led to the expression of osteopontin and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Melanoma/metabolismo , Miosinas/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Perda do Embrião/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Humanos , Melanoma/patologia , Mesoderma/embriologia , Camundongos Mutantes , Miosina Tipo I , Miosinas/química , Miosinas/genética , Osteopontina/genética , Osteopontina/metabolismo , Fosforilação , Gravidez , Domínios Proteicos , Neoplasias Cutâneas/patologia , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA