Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(15): 3109-3121, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33826326

RESUMO

Organocatalyzed ATRP (O-ATRP) is a growing field exploiting organic chromophores as photoredox catalysts (PCs) that engage in dissociative electron-transfer (DET) activation of alkyl-halide initiators following absorption of light. Characterizing DET rate coefficients (kact) and photochemical yields across various reaction conditions and PC photophysical properties will inform catalyst design and efficient use during polymerization. The studies described herein consider a class of phenoxazine PCs, where synthetic handles of core substitution and N-aryl substitution enable tunability of the electronic and spin characters of the catalyst excited state as well as DET reaction driving force (ΔGET0). Using Stern-Volmer quenching experiments through variation of the diethyl 2-bromo-2-methylmalonate (DBMM) initiator concentration, collisional quenching is observed. Eight independent measurements of kact are reported as a function of ΔGET0 for four PCs: four triplet reactants and four singlets with kact values ranging from 1.1 × 108 M-1 s-1, where DET itself controls the rate, to 4.8 × 109 M-1 s-1, where diffusion is rate-limiting. This overall data set, as well as a second one inclusive of five literature values from related systems, is readily modeled with only a single parameter of reorganization energy under the frameworks of the adiabatic Marcus electron-transfer theory and Marcus-Savéant theory of DET. The results provide a predictive map where kact can be estimated if ΔGET0 is known and highlight that DET in these systems appears insensitive to PC reactant electronic and spin properties outside of their impact on the driving force. Next, on the basis of measured kact values in selected PC systems and knowledge of their photophysics, we also consider activation yields specific to the reactant spin states as the DBMM initiator concentration is varied. In N-naphthyl-containing PCs characterized by near-unity intersystem crossing, the T1 is certainly an important driver for efficient DET. However, at DBMM concentrations common to polymer synthesis, the S1 is also active and drives 33% of DET reaction events. Even in systems with low yields of ISC, such as in N-phenyl-containing PCs, reaction yields can be driven to useful values by exploiting the S1 under high DBMM concentration conditions. Finally, we have quantified photochemical reaction quantum yields, which take into account potential product loss processes after electron-transfer quenching events. Both S1 and T1 reactant states produce the PC•+ radical cation with a common yield of 71%, thus offering no evidence for spin selectivity in deleterious back electron transfer. The subunity PC•+ yields suggest that some combination of solvent (DMAc) oxidation and energy-wasting back electron transfer is likely at play and these pathways should be factored in subsequent mechanistic considerations.

2.
J Phys Chem A ; 124(5): 817-823, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31918550

RESUMO

Phenothiazine, owing to its ease of oxidation and modularity with respect to facile functionalization, is an attractive central chemical unit from which to construct highly reducing organic photoredox catalysts. While design improvements have been made in the community, the yield of intersystem crossing (ΦISC), which determines access to the long-lived triplet excited state, has yet to be systematically optimized. Herein, we explore the impacts of N-aryl substituent variation on excited-state dynamics using picosecond to millisecond transient absorption and emission spectroscopies. Design principles are uncovered that center on controlling the energy of an intermediate charge transfer (CT) state within the singlet excited-state manifold, which, in turn, dictates the yield of CT-state formation and the rate constants for its depletion. Ultimately, we find ΦISC to be highly sensitive to the electron-withdrawing character of the N-aryl electron acceptor in the aforementioned CT state, with ΦISC ranging from ∼0 to 0.96.

3.
J Phys Chem A ; 123(22): 4727-4736, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31083893

RESUMO

Modular chromophoric systems with minimal electronic coupling between donor and acceptor moieties are well suited for establishing predictive relationships between molecular structure and excited-state properties. Here, we investigate the impact of naphthyl-based connectivity on the photophysics of phenoxazine-derived orthogonal donor-acceptor complexes. While compounds in this class are themselves interesting as potent organic photocatalysts useful for visible-light-driven organocatalyzed atom-transfer radical polymerization and small-molecule synthesis, many other systems (e.g., phenazine, phenothiazine, and acridinium) exploit charge-transfer excited states involving a naphthyl substituent. Therefore, aided by the facile tunability of the phenoxazine architecture, we aim to provide mechanistic insight into the effects of naphthyl connectivity that can help inform the understanding of other systems. We do so by employing time-resolved and steady-state spectroscopies, cyclic voltammetry, and temperature-dependent studies on two chemical series of phenoxazine compounds. In the first series ( N-aryl 3,7-dibiphenyl phenoxazine), we find high sensitivity of photophysical behavior to naphthyl connectivity at its 1 versus 2 positions, including a drop in the intersystem-crossing yield (ΦISC) from 0.91 ( N-1-naphthyl) to 0.54 ( N-2-naphthyl), which we attribute to the establishment of an excited-state equilibrium in the singlet manifold. Drawing on the synthetic tunability afforded by phenoxazine, a modified series ( N-aryl 3,7-diphenyl phenoxazine) is chosen to circumvent this equilibrium, thereby isolating the impact of naphthyl connectivity on charge-transfer energy and triplet formation. We conclude that donor-acceptor distance is a key design parameter that influences a host of excited-state and dynamical properties and can have an outsized impact on photochemical function.

4.
J Am Chem Soc ; 140(14): 4778-4781, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29595966

RESUMO

A key feature of prominent transition-metal-containing photoredox catalysts (PCs) is high quantum yield access to long-lived excited states characterized by a change in spin multiplicity. For organic PCs, challenges emerge for promoting excited-state intersystem crossing (ISC), particularly when potent excited-state reductants are desired. Herein, we report a design exploiting orthogonal π-systems and an intermediate-energy charge-transfer excited state to maximize ISC yields (ΦISC) in a highly reducing ( E0* = -1.7 V vs SCE), visible-light-absorbing phenoxazine-based PC. Simple substitution of N-phenyl for N-naphthyl is shown to dramatically increase ΦISC from 0.11 to 0.91 without altering catalytically important properties, such as E0*.


Assuntos
Compostos Organometálicos/química , Elementos de Transição/química , Catálise , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Teoria Quântica
5.
J Am Chem Soc ; 140(15): 5088-5101, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29513533

RESUMO

Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.


Assuntos
Oxazinas/química , Catálise , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Polimetil Metacrilato/síntese química , Polimetil Metacrilato/química , Teoria Quântica , Relação Estrutura-Atividade
6.
J Am Chem Soc ; 139(1): 348-355, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27973788

RESUMO

Photoexcited intramolecular charge transfer (CT) states in N,N-diaryl dihydrophenazine photoredox catalysts are accessed through catalyst design and investigated through combined experimental studies and density functional theory (DFT) calculations. These CT states are reminiscent of the metal to ligand charge transfer (MLCT) states of ruthenium and iridium polypyridyl complexes. For cases where the polar CT state is the lowest energy excited state, we observe its population through significant solvatochromic shifts in emission wavelength across the visible spectrum by varying solvent polarity. We propose the importance of accessing CT states for photoredox catalysis of atom transfer radical polymerization lies in their ability to minimize fluorescence while enhancing electron transfer rates between the photoexcited photoredox catalyst and the substrate. Additionally, solvent polarity influences the deactivation pathway, greatly affecting the strength of ion pairing between the oxidized photocatalyst and the bromide anion and thus the ability to realize a controlled radical polymerization. Greater understanding of these photoredox catalysts with respect to CT and ion pairing enables their application toward the polymerization of methyl methacrylate for the synthesis of polymers with precisely tunable molecular weights and dispersities typically lower than 1.10.


Assuntos
Compostos Organometálicos/química , Fenazinas/química , Polímeros/síntese química , Catálise , Transporte de Elétrons , Fluorescência , Radicais Livres/síntese química , Radicais Livres/química , Íons/química , Oxirredução , Processos Fotoquímicos , Polimerização , Polímeros/química , Teoria Quântica
7.
Chemistry ; 23(46): 10962-10968, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28654171

RESUMO

Photoredox catalysis is a versatile approach for the construction of challenging covalent bonds under mild reaction conditions, commonly using photoredox catalysts (PCs) derived from precious metals. As such, there is need to develop organic analogues as sustainable replacements. Although several organic PCs have been introduced, there remains a lack of strongly reducing, visible-light organic PCs. Herein, we establish the critical photophysical and electrochemical characteristics of both a dihydrophenazine and a phenoxazine system that enables their success as strongly reducing, visible-light PCs for trifluoromethylation reactions and dual photoredox/nickel-catalyzed C-N and C-S cross-coupling reactions, both of which have been historically exclusive to precious metal PCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA