Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 9(2): e0053721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668746

RESUMO

UV light, more specifically UV-C light at a wavelength of 254 nm, is often used to disinfect surfaces, air, and liquids. In early 2020, at the cusp of the COVID-19 pandemic, UV light was identified as an efficient means of eliminating coronaviruses; however, the variability in published sensitivity data is evidence of the need for experimental rigor to accurately quantify the effectiveness of this technique. In the current study, reliable and reproducible UV techniques have been adopted, including accurate measurement of light intensity, consideration of fluid UV absorbance, and confirmation of uniform dose delivery, including dose verification using an established biological target (T1UV bacteriophage) and a resistant recombinant virus (baculovirus). The experimental results establish the UV sensitivity of SARS-CoV-2, HCoV-229E, HCoV-OC43, and mouse hepatitis virus (MHV) and highlight the potential for surrogate viruses for disinfection studies. All four coronaviruses were found to be easily inactivated by 254 nm irradiation, with UV sensitivities of 1.7, 1.8, 1.7, and 1.2 mJ/cm2/log10 reduction for SARS-CoV-2, HCoV-229E, HCoV-OC43, and MHV, respectively. Similar UV sensitivities for these species demonstrate the capacity for HCoV-OC43, HCoV-229E, and MHV to be considered surrogates for SARS-CoV-2 in UV-inactivation studies, greatly reducing hazards and simplifying procedures for future experimental studies. IMPORTANCE Disinfection of SARS-CoV-2 is of particular importance due to the global COVID-19 pandemic. UV-C irradiation is a compelling disinfection technique because it can be applied to surfaces, air, and water and is commonly used in drinking water and wastewater treatment facilities. UV inactivation depends on the dose received by an organism, regardless of the intensity of the light source or the optical properties of the medium in which it is suspended. The 254 nm irradiation sensitivity was accurately determined using benchmark methodology and a collimated beam apparatus for four coronaviruses (SARS-CoV-2, HCoV-229E, HCoV-OC43, and MHV), a surrogate indicator organism (T1UV), and a resistant recombinant virus (baculovirus vector). Considering the light distribution across the sample surface, the attenuation of light intensity with fluid depth, the optical absorbance of the fluid, and the sample uniformity due to mixing enable accurate measurement of the fundamental inactivation kinetics and UV sensitivity.


Assuntos
Coronavirus Humano 229E/efeitos da radiação , Coronavirus Humano OC43/efeitos da radiação , Vírus da Hepatite Murina/efeitos da radiação , SARS-CoV-2/efeitos da radiação , Raios Ultravioleta , Animais , Baculoviridae/efeitos da radiação , COVID-19/prevenção & controle , Linhagem Celular , Chlorocebus aethiops , Desinfecção/métodos , Humanos , Células Vero
2.
J Agric Food Chem ; 64(41): 7812-7822, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27632812

RESUMO

UV-C irradiation operating at 254 nm wavelength on the polyphenolic and vitamin contents of apple juice including cytotoxicity analysis was studied. UV doses ranging from 0 to 150 mJ·cm-2 were selected for the treatments. Polyphenols (catechin, epicatechin, chlorogenic acid, and phloridzin) and vitamins (riboflavin, thiamine hydrochloride, pyridoxal hydrochloride, pyridoxine, pyridoxamine dihydrochloride, cyanocobalamin, choline chloride, biotin, niacin, and niacinamide) were chemically profiled. It was observed that UV treatment of apple juice at disinfection doses caused minor reductions (p < 0.05) in the concentrations of two main polyphenols (i.e., chlorogenic acid and epicatechin). In contrast, significant (p < 0.05) decreases in vitamin concentrations were observed (p < 0.05). The irradiated juice was evaluated for cytotoxic effects. The irradiated apple juice showed no cytotoxic effects on normal intestinal cells, and both irradiated and nonirradiated samples are significantly comparable in inhibiting the growth of human colon cancer cells. Overall, these results indicated that UV-C treatment of apple juice neither significantly degraded polyphenols nor generated cytotoxic compounds.

3.
Water Res ; 64: 209-225, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25064486

RESUMO

A novel mechanistic model that describes the vacuum UV advanced oxidation process in an annular photoreactor initiated by 172 nm and 185 nm (in combination with 253.7 nm, with and without exogenous H2O2) is presented in this paper. The model was developed from first principles by incorporating the vacuum UV-AOP kinetics into the theoretical framework of in-series continuous flow stirred tank reactors. After conducting a sensitivity analysis, model predictions were compared against experiments conducted under a variety of conditions: (a) photo-induced formation of hydrogen peroxide by water photolysis at 172 nm (for both air- and oxygen-saturated conditions); (b) photo-induced formation of hydrogen peroxide by water photolysis at 185 + 253.7 nm (in the presence of formic acid, with and without the initial addition of hydrogen peroxide); (c) direct photolysis of hydrogen peroxide by 253.7 nm; (d) degradation of formic acid by 185 + 253.7 nm (with and without initial addition of hydrogen peroxide); and (e) degradation of formic acid by 253.7 nm (with the addition of exogenous hydrogen peroxide). In all cases, the model was able to accurately predict the time-dependent profiles of hydrogen peroxide and formic acid concentrations. Two newly recognized aspects associated with water photolysis were identified through the use of the validated model. Firstly, unlike the 185 nm and 253.7 nm cases, water photolysis by the 172 nm wavelength revealed a depth of photoactive water layer an order of magnitude greater (∼230-390 µm, depending on the specific operating conditions) than the 1-log photon penetration layer (∼18 µm). To further investigate this potentially very important finding, a computational fluid dynamics model was set up to assess the role of transport mechanisms and species distributions within the photoreactor annulus. The model confirmed that short-lived hydroxyl radicals were present at a radial distance far beyond the ∼18 µm photon penetration layer. Secondly, kinetic simulations showed that the higher penetration depth of hydroxyl radicals was not caused by diffusive or convective transport phenomena but rather the effect of non-linear behavior of the complex reaction kinetics involved in the process.


Assuntos
Peróxido de Hidrogênio/química , Modelos Teóricos , Fotólise , Raios Ultravioleta , Água/química , Formiatos/química , Radical Hidroxila/química , Cinética , Oxirredução , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA