Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Cardiothorac Surg ; 62(3)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35894942

RESUMO

OBJECTIVES: This study aims to characterize the material properties of ascending thoracic aortic aneurysmal tissue, using regional biomechanical assessment of both tensile and dissection propagation peel strength. METHODS: Thirty-four aneurysm specimens (proximal thoracic aorta) were harvested en-bloc from patients undergoing surgery for aneurysm replacement. Specimens were processed into regional samples of similar shapes covering the whole aneurysm isosurface, according to a structured protocol, in both orientations (longitudinal and circumferential). Thickness mapping, uniaxial tensile and peel tests were conducted, enabling calculation of the following parameters: true stress/strain, tangential modulus, tensile strength, peeling force and dissection energy. Two constitutive material models were used (hyperelastic models of Delfino and Ogden) to fit the data. A circumferential strip of tissue was also obtained for computational histology [regional quantification of (i) elastin, (ii) collagen and (iii) smooth muscle cells]. RESULTS: The aortic wall was thinner on the outer curve (2.21, standard deviation (SD) 0.4 mm vs inner curve 2.50, SD 0.12 mm). Advanced patient age and higher pulse wave velocity (externally measured) were predictors of increased aortic wall thickness. Tensile strength was higher in the circumferential versus longitudinal direction when analysed according to anatomical regions. Both peel force (35.5, 22 N/m) and dissection energy (88.5, 69 J/m2) were on average lowest at the outer curve of the aneurysm in the longitudinal orientation. Delfino and Ogden model constants varied throughout anatomical regions, with the outer curve being associated a higher ɑ constant (Delfino) and lower µ1 constant (Ogden) (P < 0.05) indicating increased stiffness. Histologically, collagen abundance was significantly related to circumferential and longitudinal strength (P= 0.010), whilst smooth muscle cell count had no relation with any mechanical property (P > 0.05). CONCLUSIONS: Our results suggest that the outer aortic curve is more prone to dissection propagation and perhaps less prone to rupture than the inner aortic curve. This strengthens the notion of disease heterogeneity in ascending thoracic aortic aneurysms and has implications for the pathogenesis of aortic dissection.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção Aórtica/patologia , Dissecção Aórtica/cirurgia , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/patologia , Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/cirurgia , Fenômenos Biomecânicos , Colágeno , Humanos , Análise de Onda de Pulso , Estresse Mecânico
2.
J Biomech ; 116: 110196, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33422728

RESUMO

Strain measurement during tissue deformation is crucial to elucidate relationships between mechanical loading and functional changes in biological tissues. When combined with specified loading conditions, assessment of strain fields can be used to craft models that accurately represent the mechanical behavior of soft tissue. Inhomogeneities in strain fields may be indicative of normal or pathological inhomogeneities in mechanical properties. In this study, we present the validation of a modified Demons registration algorithm for non-contact, marker-less strain measurement of tissue undergoing uniaxial loading. We validate the algorithm on a synthetic dataset composed of artificial deformation fields applied to a speckle image, as well as images of aortic sections of varying perceptual quality. Initial results indicate that Demons outperforms recent Optical Flow and Digital Image Correlation methods in terms of accuracy and robustness to low image quality, with similar runtimes. Demons achieves at least 8% lower maximal deviation from ground truth on 50% biaxial and shear strain applied to aortic images. To illustrate utility, we quantified strain fields of multiple human aortic specimens undergoing uniaxial tensile testing, noting the formation of strain concentrations in areas of rupture. The modified Demons algorithm captured a large range of strains (up to 50%) and provided spatially resolved strain fields that could be useful in the assessment of soft tissue pathologies.


Assuntos
Algoritmos , Humanos
3.
Front Bioeng Biotechnol ; 9: 750656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733832

RESUMO

Background: Blood flow patterns can alter material properties of ascending thoracic aortic aneurysms (ATAA) via vascular wall remodeling. This study examines the relationship between wall shear stress (WSS) obtained from image-based computational modelling with tissue-derived mechanical and microstructural properties of the ATAA wall using segmental analysis. Methods: Ten patients undergoing surgery for ATAA were recruited. Exclusions: bicuspid aortopathy, connective tissue disease. All patients had pre-operative 4-dimensional flow magnetic resonance imaging (4D-MRI), allowing for patient-specific computational fluid dynamics (CFD) analysis and anatomically precise WSS mapping of ATAA regions (6-12 segments per patient). ATAA samples were obtained from surgery and subjected to region-specific tensile and peel testing (matched to WSS segments). Computational pathology was used to characterize elastin/collagen abundance and smooth muscle cell (SMC) count. Results: Elevated values of WSS were predictive of: reduced wall thickness [coef -0.0489, 95% CI (-0.0905, -0.00727), p = 0.022] and dissection energy function (longitudinal) [-15,0, 95% CI (-33.00, -2.98), p = 0.048]. High WSS values also predicted higher ultimate tensile strength [coef 0.136, 95% CI (0 0.001, 0.270), p = 0.048]. Additionally, elevated WSS also predicted a reduction in elastin levels [coef -0.276, 95% (CI -0.531, -0.020), p = 0.035] and lower SMC count ([oef -6.19, 95% CI (-11.41, -0.98), p = 0.021]. WSS was found to have no effect on collagen abundance or circumferential mechanical properties. Conclusions: Our study suggests an association between elevated WSS values and aortic wall degradation in ATAA disease. Further studies might help identify threshold values to predict acute aortic events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA