Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 67(3): 786-92, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17141975

RESUMO

PURPOSE: While potentially very useful, percutaneously delivered brachytherapy of inoperable intra-abdominal solid tumors faces significant technical challenges. This first-in-man study is designed to determine the safety profile and therapeutic efficacy of a novel phosphorous (32P) brachytherapy device (BrachySil) in patients with unresectable hepatocellular carcinoma. METHODS AND MATERIALS: Patients received single percutaneous and transperitoneal implantations of BrachySil under local anesthesia directly into liver tumors under ultrasound or computed tomographic guidance, at an activity level of 4 MBq/cc of tumor. Toxicity was assessed by the nature, incidence, and severity of adverse events (Common Toxicity Criteria scores) and by hematology and clinical chemistry parameters. Target tumor response was assessed with computed tomographic scans at 12 and 24 weeks postimplantation using World Health Organization criteria. RESULTS: Implantations were successfully carried out in 8 patients (13-74 MBq, mean 40 MBq per tumor) awake and under local anesthesia. Six of the 8 patients reported 19 adverse events, but no serious events were attributable to the study device. Changes in hematology and clinical chemistry were similarly minimal and reflected progressive underlying hepatic disease. All targeted tumors were responding at 12 weeks, with complete response (100% regression) in three lesions. At the end of the study, there were two complete responses, two partial responses, three stable diseases, and one progressive disease. CONCLUSION: Percutaneous implantation of this novel 32P brachytherapy device into hepatocellular carcinoma is safe and well tolerated. A significant degree of antitumor efficacy was demonstrated at this low dose that warrants further investigation.


Assuntos
Braquiterapia/instrumentação , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Radioisótopos de Fósforo/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Braquiterapia/efeitos adversos , Braquiterapia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia Intervencionista , Dosagem Radioterapêutica , Compostos de Silício/administração & dosagem , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Ultrassonografia de Intervenção
2.
EJNMMI Res ; 3(1): 57, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23885971

RESUMO

BACKGROUND: Coincidence imaging of low-abundance yttrium-90 (90Y) internal pair production by positron emission tomography with integrated computed tomography (PET/CT) achieves high-resolution imaging of post-radioembolization microsphere biodistribution. Part 2 analyzes tumor and non-target tissue dose-response by 90Y PET quantification and evaluates the accuracy of tumor 99mTc macroaggregated albumin (MAA) single-photon emission computed tomography with integrated CT (SPECT/CT) predictive dosimetry. METHODS: Retrospective dose quantification of 90Y resin microspheres was performed on the same 23-patient data set in part 1. Phantom studies were performed to assure quantitative accuracy of our time-of-flight lutetium-yttrium-oxyorthosilicate system. Dose-responses were analyzed using 90Y dose-volume histograms (DVHs) by PET voxel dosimetry or mean absorbed doses by Medical Internal Radiation Dose macrodosimetry, correlated to follow-up imaging or clinical findings. Intended tumor mean doses by predictive dosimetry were compared to doses by 90Y PET. RESULTS: Phantom studies demonstrated near-perfect detector linearity and high tumor quantitative accuracy. For hepatocellular carcinomas, complete responses were generally achieved at D70 > 100 Gy (D70, minimum dose to 70% tumor volume), whereas incomplete responses were generally at D70 < 100 Gy; smaller tumors (<80 cm3) achieved D70 > 100 Gy more easily than larger tumors. There was complete response in a cholangiocarcinoma at D70 90 Gy and partial response in an adrenal gastrointestinal stromal tumor metastasis at D70 53 Gy. In two patients, a mean dose of 18 Gy to the stomach was asymptomatic, 49 Gy caused gastritis, 65 Gy caused ulceration, and 53 Gy caused duodenitis. In one patient, a bilateral kidney mean dose of 9 Gy (V20 8%) did not cause clinically relevant nephrotoxicity. Under near-ideal dosimetric conditions, there was excellent correlation between intended tumor mean doses by predictive dosimetry and those by 90Y PET, with a low median relative error of +3.8% (95% confidence interval, -1.2% to +13.2%). CONCLUSIONS: Tumor and non-target tissue absorbed dose quantification by 90Y PET is accurate and yields radiobiologically meaningful dose-response information to guide adjuvant or mitigative action. Tumor 99mTc MAA SPECT/CT predictive dosimetry is feasible. 90Y DVHs may guide future techniques in predictive dosimetry.

3.
EJNMMI Res ; 3(1): 56, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23883566

RESUMO

BACKGROUND: Yttrium-90 (90Y) positron emission tomography with integrated computed tomography (PET/CT) represents a technological leap from 90Y bremsstrahlung single-photon emission computed tomography with integrated computed tomography (SPECT/CT) by coincidence imaging of low abundance internal pair production. Encouraged by favorable early experiences, we implemented post-radioembolization 90Y PET/CT as an adjunct to 90Y bremsstrahlung SPECT/CT in diagnostic reporting. METHODS: This is a retrospective review of all paired 90Y PET/CT and 90Y bremsstrahlung SPECT/CT scans over a 1-year period. We compared image resolution, ability to confirm technical success, detection of non-target activity, and providing conclusive information about 90Y activity within targeted tumor vascular thrombosis. 90Y resin microspheres were used. 90Y PET/CT was performed on a conventional time-of-flight lutetium-yttrium-oxyorthosilicate scanner with minor modifications to acquisition and reconstruction parameters. Specific findings on 90Y PET/CT were corroborated by 90Y bremsstrahlung SPECT/CT, 99mTc macroaggregated albumin SPECT/CT, follow-up diagnostic imaging or review of clinical records. RESULTS: Diagnostic reporting recommendations were developed from our collective experience across 44 paired scans. Emphasis on the continuity of care improved overall diagnostic accuracy and reporting confidence of the operator. With proper technique, the presence of background noise did not pose a problem for diagnostic reporting. A counter-intuitive but effective technique of detecting non-target activity is proposed, based on the pattern of activity and its relation to underlying anatomy, instead of its visual intensity. In a sub-analysis of 23 patients with a median follow-up of 5.4 months, 90Y PET/CT consistently outperformed 90Y bremsstrahlung SPECT/CT in all aspects of qualitative analysis, including assessment for non-target activity and tumor vascular thrombosis. Parts of viscera closely adjacent to the liver remain challenging for non-target activity detection, compounded by a tendency for mis-registration. CONCLUSIONS: Adherence to proper diagnostic reporting technique and emphasis on continuity of care are vital to the clinical utility of post-radioembolization 90Y PET/CT. 90Y PET/CT is superior to 90Y bremsstrahlung SPECT/CT for the assessment of target and non-target activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA