Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 15(14): 2990-2998, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30855068

RESUMO

We present here the use of the capillary bridge technique to study the wetting properties (advancing and receding contact angles) of transparent, textured and superhydrophobic surfaces over large wetted area. Apparent contact angles on such surfaces are classically measured using a goniometer in combination with video camera side visualization and a drop shape analysis. Recent experiments of Schellenberger et al. [F. Schellenberger, N. Encinas, D. Vollmer and H. J. Butt, Phys. Rev. Lett., 2016, 116(9), 096101] show that this method can significantly underestimate the apparent advancing contact angle. We use for the first time the capillary bridge setup for such textured surfaces, leading to a large (up to several cm2) wetted area, instead of having a reduced contact zone as in the drop case (mm2 or less). (1) We show here how to use the method and its characteristics to explore the wetting properties of superhydrophobic surfaces. We have developed a new analysis method in order to obtain the value of the contact angle for any position of the substrate. (2) We compare with the classical drop side view method, showing that advancing contact angles are systematically higher. (3) We compare to a few existing models, concluding a good agreement for receding values but not for advancing angles, for which models must be refined.

2.
Sci Rep ; 6: 35975, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775062

RESUMO

Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA