Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Exp Cell Res ; 329(1): 170-7, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038291

RESUMO

In eukaryotes, the evolutionarily conserved RAD6/RAD18 pathway of DNA damage tolerance overcomes unrepaired DNA lesions that interfere with the progression of replication forks, helping to ensure the completion of chromosome replication and the maintenance of genome stability in every cell cycle. This pathway uses two different strategies for damage bypass: translesion DNA synthesis, which is carried out by specialized polymerases that can replicate across the lesions, and DNA damage avoidance, a process that relies on a switch to an undamaged-DNA template for synthesis past the lesion. In this review, we summarise the current knowledge on DNA damage tolerance mechanisms mediated by RAD6/RAD18 that are used by eukaryotic cells to cope with DNA lesions during chromosome replication.


Assuntos
Cromossomos/genética , Dano ao DNA , Replicação do DNA , Células Eucarióticas/metabolismo , Animais , Reparo do DNA , Humanos
2.
Nucleic Acids Res ; 41(19): 8943-58, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23901010

RESUMO

The structure-specific Mus81-Eme1/Mms4 endonuclease contributes importantly to DNA repair and genome integrity maintenance. Here, using budding yeast, we have studied its function and regulation during the cellular response to DNA damage and show that this endonuclease is necessary for successful chromosome replication and cell survival in the presence of DNA lesions that interfere with replication fork progression. On the contrary, Mus81-Mms4 is not required for coping with replicative stress originated by acute treatment with hydroxyurea (HU), which causes fork stalling. Despite its requirement for dealing with DNA lesions that hinder DNA replication, Mus81-Mms4 activation is not induced by DNA damage at replication forks. Full Mus81-Mms4 activity is only acquired when cells finish S-phase and the endonuclease executes its function after the bulk of genome replication is completed. This post-replicative mode of action of Mus81-Mms4 limits its nucleolytic activity during S-phase, thus avoiding the potential cleavage of DNA substrates that could cause genomic instability during DNA replication. At the same time, it constitutes an efficient fail-safe mechanism for processing DNA intermediates that cannot be resolved by other proteins and persist after bulk DNA synthesis, which guarantees the completion of DNA repair and faithful chromosome replication when the DNA is damaged.


Assuntos
Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Endonucleases Flap/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/genética , Deleção de Genes , Resolvases de Junção Holliday/genética , Hidroxiureia/toxicidade , Viabilidade Microbiana , RecQ Helicases/genética , Fase S/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 40(1): 245-57, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21911365

RESUMO

Mgs1, the budding yeast homolog of mammalian Werner helicase-interacting protein 1 (WRNIP1/WHIP), contributes to genome stability during undisturbed replication and in response to DNA damage. A ubiquitin-binding zinc finger (UBZ) domain directs human WRNIP1 to nuclear foci, but the functional significance of its presence and the relevant ubiquitylation targets that this domain recognizes have remained unknown. Here, we provide a mechanistic basis for the ubiquitin-binding properties of the protein. We show that in yeast an analogous domain exclusively mediates the damage-related activities of Mgs1. By means of preferential physical interactions with the ubiquitylated forms of the replicative sliding clamp, proliferating cell nuclear antigen (PCNA), the UBZ domain facilitates recruitment of Mgs1 to sites of replication stress. Mgs1 appears to interfere with the function of polymerase δ, consistent with our observation that Mgs1 inhibits the interaction between the polymerase and PCNA. Our identification of Mgs1 as a UBZ-dependent downstream effector of ubiquitylated PCNA suggests an explanation for the ambivalent role of the protein in damage processing.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Ligação Competitiva , DNA Helicases/química , DNA Polimerase III/metabolismo , Replicação do DNA , Genoma Fúngico , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
Nucleic Acids Res ; 40(17): 8325-35, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22730299

RESUMO

The conserved heterodimeric endonuclease Mus81-Eme1/Mms4 plays an important role in the maintenance of genomic integrity in eukaryotic cells. Here, we show that budding yeast Mus81-Mms4 is strictly regulated during the mitotic cell cycle by Cdc28 (CDK)- and Cdc5 (Polo-like kinase)-dependent phosphorylation of the non-catalytic subunit Mms4. The phosphorylation of this protein occurs only after bulk DNA synthesis and before chromosome segregation, and is absolutely necessary for the function of the Mus81-Mms4 complex. Consistently, a phosphorylation-defective mms4 mutant shows highly reduced nuclease activity and increases the sensitivity of cells lacking the RecQ-helicase Sgs1 to various agents that cause DNA damage or replicative stress. The mode of regulation of Mus81-Mms4 restricts its activity to a short period of the cell cycle, thus preventing its function during chromosome replication and the negative consequences for genome stability derived from its nucleolytic action. Yet, the controlled Mus81-Mms4 activity provides a safeguard mechanism to resolve DNA intermediates that may remain after replication and require processing before mitosis.


Assuntos
Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Replicação do DNA , Endonucleases Flap/genética , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 285(6): 3643-3650, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19933276

RESUMO

Capsid proteins that adopt distinct conformations constitute a paradigm of the structural polymorphism of macromolecular assemblies. We show the molecular basis of the flexibility mechanism of VP2, the capsid protein of the double-stranded RNA virus infectious bursal disease virus. The initial assembly, a procapsid-like structure, is built by the protein precursor pVP2 and requires VP3, the other infectious bursal disease virus major structural protein, which acts as a scaffold. The pVP2 C-terminal region, which is proteolyzed during virus maturation, contains an amphipathic alpha-helix that acts as a molecular switch. In the absence of VP3, efficient virus-like particle assembly occurs when the structural unit is a VP2-based chimeric protein with an N-terminal-fused His(6) tag. The His tag has a positively charged N terminus and a negatively charged C terminus, both important for virion-like structure assembly. The charge distributions of the VP3 C terminus and His tag are similar. We tested whether the His tag emulates the role of VP3 and found that the presence of a VP3 C-terminal peptide in VP2-based chimeric proteins resulted in the assembly of virus-like particles. We analyzed the electrostatic interactions between these two charged morphogenetic peptides, in which a single residue was mutated to impede the predicted interaction, followed by a compensatory double mutation to rescue electrostatic interactions. The effects of these mutations were monitored by following the virus-like and/or virus-related assemblies. Our results suggest that the basic face of the pVP2 amphipathic alpha-helix interacts with the acidic region of the VP3 C terminus and that this interaction is essential for VP2 acquisition of competent conformations for capsid assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Vírus de RNA/fisiologia , Proteínas Virais/metabolismo , Western Blotting , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Eletroforese em Gel de Poliacrilamida , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/ultraestrutura , Microscopia Eletrônica , Mutação , Vírus de RNA/genética , Vírus de RNA/ultraestrutura , Eletricidade Estática , Proteínas Virais/química , Proteínas Virais/genética , Vírion/metabolismo , Montagem de Vírus
6.
Methods Mol Biol ; 2153: 521-534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840802

RESUMO

The analysis of protein relocalization by fluorescence microscopy has been important for studying processes involved in genome integrity maintenance at the cellular level. Structure-specific endonucleases are required for genome stability, and work in budding yeast has revealed that these proteins accumulate and colocalize at discrete subnuclear foci following DNA damage. Here we describe protocols for fluorescence microscopy analysis of live budding-yeast cells containing fluorescent-tagged proteins that have been useful for the study of endonuclease relocalization during the cell cycle and under DNA-damaging conditions, all of which can be extended to the analysis of other proteins.


Assuntos
Dano ao DNA , Endonucleases/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Replicação do DNA , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 11(1): 5746, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184279

RESUMO

The Mus81-Mms4 nuclease is activated in G2/M via Mms4 phosphorylation to allow resolution of persistent recombination structures. However, the fate of the activated phosphorylated Mms4 remains unknown. Here we find that Mms4 is engaged by (poly)SUMOylation and ubiquitylation and targeted for proteasome degradation, a process linked to the previously described Mms4 phosphorylation cycle. Mms4 is a mitotic substrate for the SUMO-Targeted Ubiquitin ligase Slx5/8, the SUMO-like domain-containing protein Esc2, and the Mms1-Cul8 ubiquitin ligase. In the absence of these activities, phosphorylated Mms4 accumulates on chromatin in an active state in the next G1, subsequently causing abnormal processing of replication-associated recombination intermediates and delaying the activation of the DNA damage checkpoint. Mus81-Mms4 mutants that stabilize phosphorylated Mms4 have similar detrimental effects on genome integrity. Overall, our findings highlight a replication protection function for Esc2-STUbL-Cul8 and emphasize the importance for genome stability of resetting phosphorylated Mms4 from one cycle to another.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Culina/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/genética , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Mitose/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Sci Adv ; 6(15): eaaz3327, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32285001

RESUMO

DNA damage tolerance (DDT) is crucial for genome integrity maintenance. DDT is mainly carried out by template switch recombination, an error-free mode of overcoming DNA lesions, or translesion DNA synthesis, which is error-prone. Here, we investigated the role of Mgs1/WRNIP1 in modulating DDT. Using budding yeast, we found that elimination of Mgs1 in cells lacking Rad5, an essential protein for DDT, activates an alternative mode of DNA damage bypass, driven by recombination, which allows chromosome replication and cell viability under stress conditions that block DNA replication forks. This salvage pathway is RAD52 and RAD59 dependent, requires the DNA polymerase δ and PCNA modification at K164, and is enabled by Esc2 and the PCNA unloader Elg1, being inhibited when Mgs1 is present. We propose that Mgs1 is necessary to prevent a potentially toxic recombination salvage pathway at sites of perturbed replication, which, in turn, favors Rad5-dependent template switching, thus helping to preserve genome stability.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Recombinação Genética , Transdução de Sinais , DNA Helicases/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Instabilidade Genômica , Viabilidade Microbiana/genética , Modelos Biológicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Estresse Fisiológico
9.
Structure ; 13(7): 1007-17, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16004873

RESUMO

The infectious bursal disease virus T=13 viral particle is composed of two major proteins, VP2 and VP3. Here, we show that the molecular basis of the conformational flexibility of the major capsid protein precursor, pVP2, is an amphipatic alpha helix formed by the sequence GFKDIIRAIR. VP2 containing this alpha helix is able to assemble into the T=13 capsid only when expressed as a chimeric protein with an N-terminal His tag. An amphiphilic alpha helix, which acts as a conformational switch, is thus responsible for the inherent structural polymorphism of VP2. The His tag mimics the VP3 C-terminal region closely and acts as a molecular triggering factor. Using cryo-electron microscopy difference imaging, both polypeptide elements were detected on the capsid inner surface. We propose that electrostatic interactions between these two morphogenic elements are transmitted to VP2 to acquire the competent conformations for capsid assembly.


Assuntos
Capsídeo/química , Vírus da Doença Infecciosa da Bursa/genética , Polimorfismo Genético , Vírus de RNA/genética , Sequência de Aminoácidos , Baculoviridae/genética , Western Blotting , Proteínas do Capsídeo/química , Dicroísmo Circular , Microscopia Crioeletrônica , Eletroforese em Gel de Poliacrilamida , Deleção de Genes , Proteínas de Fluorescência Verde/química , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática
10.
Cell Rep ; 20(7): 1553-1562, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813668

RESUMO

Structure-specific endonucleases contribute to the maintenance of genome integrity by cleaving DNA intermediates that need to be resolved for faithful DNA repair, replication, or recombination. Despite advances in the understanding of their function and regulation, it is less clear how these proteins respond to genotoxic stress. Here, we show that the structure-specific endonuclease Mus81-Mms4/EME1 relocalizes to subnuclear foci following DNA damage and colocalizes with the endonucleases Rad1-Rad10 (XPF-ERCC1) and Slx1-Slx4. Recruitment takes place into a class of stress foci defined by Cmr1/WDR76, a protein involved in preserving genome stability, and depends on the E2-ubiquitin-conjugating enzyme Rad6 and the E3-ubiquitin ligase Bre1. Foci dynamics show that, in the presence of DNA intermediates that need resolution by Mus81-Mms4, Mus81 foci persist until this endonuclease is activated by Mms4 phosphorylation. Our data suggest that subnuclear relocalization is relevant for the function of Mus81-Mms4 and, probably, of the endonucleases that colocalize with it.


Assuntos
Reparo do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Endonucleases Específicas para DNA e RNA de Cadeia Simples/genética , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
11.
J Antibiot (Tokyo) ; 70(4): 404-413, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27731336

RESUMO

Antibiotic A201A produced by Saccharothrix mutabilis subsp. capreolus NRRL3817 contains an aminonucleoside (N6, N6-dimethyl-3'-amino-3'-deoxyadenosyl), a polyketide (α-methyl-p-coumaric acid) and a disaccharide moiety. The heterologous expression in Streptomyces lividans and Streptomyces coelicolor of a S. mutabilis genomic region of ~34 kb results in the production of A201A, which was identified by microbiological, biochemical and physicochemical approaches, and indicating that this region may contain the entire A201A biosynthetic gene cluster (ata). The analysis of the nucleotide sequence of the fragment reveals the presence of 32 putative open reading frames (ORF), 28 of which according to boundary gene inactivation experiments are likely to be sufficient for A201A biosynthesis. Most of these ORFs could be assigned to the biosynthesis of the antibiotic three structural moieties. Indeed, five ORFs had been previously implicated in the biosynthesis of the aminonucleoside moiety, at least nine were related to the biosynthesis of the polyketide (ata-PKS1-ataPKS4, ata18, ata19, ata2, ata4 and ata7) and six were associated with the synthesis of the disaccharide (ata12, ata13, ata16, ata17, ata5 and ata10) moieties. In addition to AtaP5, three putative methyltransferase genes are also found in the ata cluster (Ata6, Ata8 and Ata11), and no regulatory genes were found.


Assuntos
Actinomycetales/genética , Aminoglicosídeos/biossíntese , Aminoglicosídeos/genética , Antibacterianos/biossíntese , Família Multigênica/genética , Sequência de Aminoácidos , Sequência de Bases , Biologia Computacional , Dissacarídeos/biossíntese , Dissacarídeos/genética , Marcação de Genes , Metiltransferases/genética , Oligonucleotídeos/química , Plasmídeos , Policetídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
12.
Cell Rep ; 9(2): 460-8, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25310987

RESUMO

The RAD6/RAD18 pathway of DNA damage tolerance overcomes unrepaired lesions that block replication forks. It is subdivided into two branches: translesion DNA synthesis, which is frequently error prone, and the error-free DNA-damage-avoidance subpathway. Here, we show that Rad5(HLTF/SHPRH), which mediates the error-free branch, has a major role in the response to DNA damage caused by methyl methanesulfonate (MMS) during chromosome replication, whereas translesion synthesis polymerases make only a minor contribution. Both the ubiquitin-ligase and the ATPase/helicase activities of Rad5 are necessary for this cellular response. We show that Rad5 is required for the progression of replication forks through MMS-damaged DNA. Moreover, supporting its role during replication, this protein reaches maximum levels during S phase and forms subnuclear foci when replication occurs in the presence of DNA damage. Thus, Rad5 ensures the completion of chromosome replication under DNA-damaging conditions while minimizing the risk of mutagenesis, thereby contributing significantly to genome integrity maintenance.


Assuntos
Cromossomos Fúngicos/genética , Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , DNA Helicases/genética , Metanossulfonato de Metila/toxicidade , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
Genetics ; 189(2): 479-94, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21840851

RESUMO

In Saccharomyces cerevisiae, the TEA transcription factor Tec1 controls several developmental programs in response to nutrients and pheromones. Tec1 is targeted by the pheromone-responsive Fus3/Kss1 mitogen-activated protein kinase (MAPK) cascade, which destabilizes the transcription factor to ensure efficient mating of sexual partner cells. The regulation of Tec1 by signaling pathways that control cell division and development in response to nutrients, however, is not known. Here, we show that Tec1 protein stability is under control of the nutrient-sensitive target of rapamycin complex 1 (TORC1) signaling pathway via the Tip41-Tap42-Sit4 branch. We further show that degradation of Tec1 upon inhibition of TORC1 by rapamycin does not involve polyubiquitylation and appears to be proteasome independent. However, rapamycin-induced Tec1 degradation depends on the HECT ubiquitin ligase Rsp5, which physically interacts with Tec1 via conserved PxY motives. We further demonstrate that rapamycin and mating pheromone control Tec1 protein stability through distinct mechanisms by targeting different domains of the transcription factor. Finally, we show that Tec1 is a positive regulator of yeast chronological lifespan (CLS), a known TORC1-regulated process. Our findings indicate that in yeast, Tec1 links TORC1 and MAPK signaling pathways to coordinate control of cellular development in response to different stimuli.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antifúngicos/farmacologia , Northern Blotting , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Ligação Proteica , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
14.
J Mol Biol ; 386(3): 891-901, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19063900

RESUMO

Genome-binding proteins with scaffolding and/or regulatory functions are common in living organisms and include histones in eukaryotic cells, histone-like proteins in some double-stranded DNA (dsDNA) viruses, and the nucleocapsid proteins of single-stranded RNA viruses. dsRNA viruses nevertheless lack these ribonucleoprotein (RNP) complexes and are characterized by sharing an icosahedral T=2 core involved in the metabolism and insulation of the dsRNA genome. The birnaviruses, with a bipartite dsRNA genome, constitute a well-established exception and have a single-shelled T=13 capsid only. Moreover, as in many negative single-stranded RNA viruses, the genomic dsRNA is bound to a nucleocapsid protein (VP3) and the RNA-dependent RNA polymerase (VPg). We used electron microscopy and functional analysis to characterize these RNP complexes of infectious bursal disease virus, the best characterized member of the Birnaviridae family. Mild disruption of viral particles revealed that VP3, the most abundant core protein, present at approximately 450 copies per virion, is found in filamentous material tightly associated with the dsRNA. We developed a method to purify RNP and VPg-dsRNA complexes. Analysis of these complexes showed that they are linear molecules containing a constant amount of protein. Sensitivity assays to nucleases indicated that VP3 renders the genomic dsRNA less accessible for RNase III without introducing genome compaction. Additionally, we found that these RNP complexes are functionally competent for RNA synthesis in a capsid-independent manner, in contrast to most dsRNA viruses.


Assuntos
Vírus da Doença Infecciosa da Bursa/química , Vírus da Doença Infecciosa da Bursa/ultraestrutura , Substâncias Macromoleculares/química , Ribonucleoproteínas/química , Proteínas Virais/química , Vírus da Doença Infecciosa da Bursa/metabolismo , Substâncias Macromoleculares/metabolismo , Microscopia Eletrônica de Transmissão , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Ribonuclease III/metabolismo , Ribonucleoproteínas/metabolismo
15.
J Virol ; 81(13): 6869-78, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17442720

RESUMO

Infectious bursal disease virus (IBDV), a double-stranded RNA (dsRNA) virus belonging to the Birnaviridae family, is an economically important avian pathogen. The IBDV capsid is based on a single-shelled T=13 lattice, and the only structural subunits are VP2 trimers. During capsid assembly, VP2 is synthesized as a protein precursor, called pVP2, whose 71-residue C-terminal end is proteolytically processed. The conformational flexibility of pVP2 is due to an amphipathic alpha-helix located at its C-terminal end. VP3, the other IBDV major structural protein that accomplishes numerous roles during the viral cycle, acts as a scaffolding protein required for assembly control. Here we address the molecular mechanism that defines the multimeric state of the capsid protein as hexamers or pentamers. We used a combination of three-dimensional cryo-electron microscopy maps at or close to subnanometer resolution with atomic models. Our studies suggest that the key polypeptide element, the C-terminal amphipathic alpha-helix, which acts as a transient conformational switch, is bound to the flexible VP2 C-terminal end. In addition, capsid protein oligomerization is also controlled by the progressive trimming of its C-terminal domain. The coordination of these molecular events correlates viral capsid assembly with different conformations of the amphipathic alpha-helix in the precursor capsid, as a five-alpha-helix bundle at the pentamers or an open star-like conformation at the hexamers. These results, reminiscent of the assembly pathway of positive single-stranded RNA viruses, such as nodavirus and tetravirus, add new insights into the evolutionary relationships of dsRNA viruses.


Assuntos
Capsídeo/química , Vírus da Doença Infecciosa da Bursa/química , Modelos Moleculares , Proteínas Estruturais Virais/química , Montagem de Vírus , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus da Doença Infecciosa da Bursa/metabolismo , Vírus da Doença Infecciosa da Bursa/ultraestrutura , Nodaviridae/química , Nodaviridae/ultraestrutura , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Estruturais Virais/metabolismo
16.
J Virol ; 80(14): 6895-905, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16809295

RESUMO

Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus that causes a highly contagious disease in young chickens leading to significant economic losses in the poultry industry. The VP2 protein, the only structural component of the IBDV icosahedral capsid, spontaneously assembles into T=1 subviral particles (SVP) when individually expressed as a chimeric gene. We have determined the crystal structure of the T=1 SVP to 2.60 A resolution. Our results show that the 20 trimeric VP2 clusters forming the T=1 shell are further stabilized by calcium ions located at the threefold icosahedral axes. The structure also reveals a new unexpected domain swapping that mediates interactions between adjacent trimers: a short helical segment located close to the end of the long C-terminal arm of VP2 is projected toward the threefold axis of a neighboring VP2 trimer, leading to a complex network of interactions that increases the stability of the T=1 particles. Analysis of crystal packing shows that the exposed capsid residues, His253 and Thr284, determinants of IBDV virulence and the adaptation of the virus to grow in cell culture, are involved in particle-particle interactions.


Assuntos
Capsídeo/química , Vírus da Doença Infecciosa da Bursa/química , Complexos Multiproteicos/química , Proteínas Estruturais Virais/química , Capsídeo/ultraestrutura , Cristalografia por Raios X , Vírus da Doença Infecciosa da Bursa/patogenicidade , Vírus da Doença Infecciosa da Bursa/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/ultraestrutura , Proteínas Estruturais Virais/ultraestrutura
17.
Eur J Biochem ; 269(22): 5527-35, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12423351

RESUMO

A novel cosmid (pABC6.5) whose DNA insert from Streptomyces capreolus, the A201A antibiotic producer, overlaps the inserts of the previously reported pCAR11 and pCAR13 cosmids, has been isolated. These two latter cosmids were known to contain the aminonucleoside antibiotic A201A resistance determinants ard2 and ard1, respectively. Together, these three cosmids have permitted the identification of a DNA stretch of 19 kb between ard1 and ard2, which should comprise a large region of a putative A201A biosynthetic (ata) gene cluster. The sequence of the 7 kb upstream of ard1 towards ard2 reveals seven consecutive open reading frames: ataP3, ataP5, ataP4, ataP10, ataP7, ata12 and ataPKS1. Except for the last two, their deduced products present high similarities to an identical number of counterparts from the pur cluster of Streptomyces alboniger that were either known or proposed to be implicated in the biosynthesis of the N6,N6-dimethyl-3'-amino-3'-deoxyadenosine moiety of puromycin. Because A201A contains this chemical moiety, these ataP genes are most likely implicated in its biosynthesis. Accordingly, the ataP4, ataP5 and ataP10 genes complemented specific puromycin nonproducing Deltapur4, Deltapur5 and Deltapur10 mutants of S. alboniger, respectively. Amino acid sequence comparisons suggest that ata12 and ataPKS1 could be implicated in the biosynthesis of the d-rhamnose and alpha-p-coumaric acid moieties of A201A. Further sequencing of 2 kb of DNA downstream of ard1 has disclosed a region which might contain one end of the ata cluster.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Puromicina Aminonucleosídeo/química , Puromicina Aminonucleosídeo/metabolismo , Streptomyces/química , Streptomyces/genética , Sequência de Aminoácidos , Sequência de Bases , Desoxiadenosinas/química , Teste de Complementação Genética , Modelos Químicos , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Mutação , Fases de Leitura Aberta , Plasmídeos/metabolismo , Puromicina/farmacologia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA